博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏

Posted 既然选择了远方,便只顾风雨兼程

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏相关的知识,希望对你有一定的参考价值。

Description

Input

输入的第一行包含两个正整数 n、m。
接下来 n行描述初始棋盘。其中第i 行包含 m个字符,每个字符都是大写英文字母"X"、大写英文字母"O"或点号"."之一,分别表示对应的棋盘格中有黑色棋子、有白色棋子和没有棋子。其中点号"."恰好出现一次。
接下来一行包含一个整数 k(1≤k≤1000) ,表示兔兔和蛋蛋各进行了k次操作。
接下来 2k行描述一局游戏的过程。其中第 2i – 1行是兔兔的第 i 次操作(编号为i的操作) ,第2i行是蛋蛋的第i次操作。每个操作使用两个整数x,y来描述,表示将第x行第y列中的棋子移进空格中。
输入保证整个棋盘中只有一个格子没有棋子, 游戏过程中兔兔和蛋蛋的每个操作都是合法的,且最后蛋蛋获胜。

Output

输出文件的第一行包含一个整数r,表示兔兔犯错误的总次数。
接下来r 行按递增的顺序给出兔兔“犯错误”的操作编号。其中第 i 行包含一个整数ai表示兔兔第i 个犯错误的操作是他在游戏中的第 ai次操作。
1 ≤n≤ 40, 1 ≤m≤ 40

Sample Input

样例一:
1 6
XO.OXO
1
1 2
1 1
样例二:
3 3
XOX
O.O
XOX
4
2 3
1 3
1 2
1 1
2 1
3 1
3 2
3 3
样例三:
4 4
OOXX
OXXO
OO.O
XXXO
2
3 2
2 2
1 2
1 3

Sample Output

样例一:
1
1
样例二:
0
样例三:
2
1
2

样例1对应图一中的游戏过程
样例2对应图三中的游戏过程

HINT

  这道题很好,思维巧妙又不难打。题解直接引用maijing的:

二分图匹配。

性质1 空格移动的路径一定不会自交。

记出发格子为A_0,第i步到达的格子为A_i。

虽然第一次相交的点不一定是A_0,但不失一般性,假设走了n步之后第一次与A_0相交,即走过了A_0,A_1,A_2,...,A_n-1,A_n。

因为每次是移动是上下左右四个方向之一,因为又回到出发点,所以有多少次向上走就有多少次向下走,有多少次向左走就有多少次向右走,所以n是偶数。

我们发现,第奇数次移动的为先手,即A_1,A_3,A_5,...,A_n-1;第偶数次移动的为后手,即A_0,A_2,A_4,...,A_n。

因为又回到了出发地,所以A_1和A_n是同一个棋子,但是2个人同时移动了这个棋子,矛盾,所以空格移动的路径一定不会自交。

 

不妨将刚开始时空格所在的格子看成黑色 那么空格移动的路径一定是黑白相间的。

建立二分图,左边为黑色,右边为白色,之间有相邻关系的连边。兔兔是从左边走到右边,蛋蛋是从右边走到左边。

 

性质2 当且仅当最大匹配一定覆盖空格所在的结点时,兔兔必胜;否则蛋蛋必胜。

(1)如果存在一个最大匹配不覆盖空格所在的结点,蛋蛋必胜。

如图实线是匹配边,虚线是非匹配边,空格所在的结点为start。

因为最大匹配不覆盖空格所在的结点start,所以兔兔只能沿着某一条非匹配边到右边,不妨设到了v(如果没有到右边的没走过的非匹配边,那么兔兔输了)。

v一定是被覆盖的(不然start就可以连到v,就不是最大匹配了)。

蛋蛋可以沿着覆盖v的匹配边到左边的u。

也就是说,当兔兔到了右边后,蛋蛋一定有路径回到左边;但是当蛋蛋到了左边后,兔兔不一定有路径到右边。

所以如果存在一个最大匹配不覆盖空格所在的结点,蛋蛋必胜。

(2)如果最大匹配一定覆盖空格所在的结点时,兔兔必胜。

我们可以类似(1)中进行分析。

 

虽然这道题不是问我们谁必胜,但这给我们接下来提供了一种思考方法。

现在兔兔走第1步,从start走到v。

首先我们根据性质2,判断兔兔是否必胜,就是判断使用start点和不使用start点时的最大匹配是否相等,如果不相等,说明最大匹配一定覆盖start点,兔兔必胜。

然后强行覆盖start到v的边。

我们要这时候蛋蛋要从左边往右边走,我们要判断蛋蛋是否必胜。

如果蛋蛋能够走到兔兔的一个必败态,那么蛋蛋必胜。

根据性质2,我们得出结论:在start到v的边一定被覆盖的情况下,当且仅当与v有边相连的所有点都一定被最大匹配覆盖,蛋蛋必输;否则蛋蛋必胜。

所以如果在某种最大匹配方案中,与v相连的某个点没有被最大匹配覆盖,那么蛋蛋必胜。

如图,与v相连的点为a,b,c,在图示的最大匹配方案中,c没有被最大匹配覆盖,所以蛋蛋必胜。

 

接下来读入蛋蛋第1步走的格子,start变成为蛋蛋第1步走的格子。

然后类似做就可以了。

  然后代码极简单。

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 using namespace std;
 5 const int N=1610;
 6 const int M=15010;
 7 int cnt,cntX,cntO;
 8 int fir[N],to[M],nxt[M];
 9 int match[N],vis[N],ban[N],id[50][50],ans[100010];
10 char map[50][50];
11 int n,m,px,py;
12 int tx[4]={0,1,0,-1};
13 int ty[4]={1,0,-1,0};
14 void addedge(int a,int b){
15     nxt[++cnt]=fir[a];to[fir[a]=cnt]=b;
16 }
17 
18 bool DFS(int x){
19     for(int i=fir[x];i;i=nxt[i])
20         if(!vis[to[i]]&&!ban[to[i]]){vis[to[i]]=1;
21             if(!match[to[i]]||DFS(match[to[i]]))
22                 {match[match[to[i]]=x]=to[i];return true;}
23         }
24     return false;    
25 }
26 
27 int main(){
28     scanf("%d%d",&n,&m);
29     for(int i=1;i<=n;i++)
30         scanf("%s",map[i]+1);
31     for(int i=1;i<=n;i++)
32         for(int j=1;j<=m;j++){
33             if(map[i][j]==\'.\')
34                 map[i][j]=\'X\',px=i,py=j;
35             if(map[i][j]==\'O\')
36                 id[i][j]=++cntO;
37             else if(map[i][j]==\'X\')
38                 id[i][j]=++cntX;    
39         }
40     for(int i=1;i<=n;i++)
41         for(int j=1;j<=m;j++)
42             if(map[i][j]==\'O\')
43                 id[i][j]+=cntX;
44     
45     for(int i=1;i<=n;i++)
46         for(int j=1;j<=m;j++)if(id[i][j]){
47             for(int k=0;k<4;k++){
48                 int gx=tx[k]+i,gy=ty[k]+j;
49                 if(map[gx][gy]!=map[i][j])
50                     addedge(id[i][j],id[gx][gy]);
51             }
52         }
53     for(int i=1;i<=cntX;i++)if(!match[i])
54         {memset(vis,0,sizeof(vis));DFS(i);}
55     
56     int k;scanf("%d",&k);
57     for(int i=1;i<=2*k;i++){
58         int x;ban[x=id[px][py]]=1;
59         if(match[x]){int y=match[x];
60             memset(vis,0,sizeof(vis));
61             match[x]=match[y]=0;
62             ans[i]=DFS(y)^1;
63         }
64         scanf("%d%d",&px,&py);
65     }
66     int ret=0;
67     for(int i=1;i<=k;i++)
68         ret+=ans[i*2]&ans[i*2-1];
69     printf("%d\\n",ret);
70     for(int i=1;i<=k;i++)
71         if(ans[i*2]&ans[i*2-1])
72             printf("%d\\n",i);
73     return 0;
74 }

 

以上是关于博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏的主要内容,如果未能解决你的问题,请参考以下文章

bzoj 2437: [Noi2011]兔兔与蛋蛋

[bzoj2437]兔兔与蛋蛋

[匈牙利算法][博弈] Luogu P1971 兔兔与蛋蛋

[luoguP1963] [NOI2009]变换序列(二分图最大匹配)

题解 [NOI2009]变换序列 (二分图匹配)

BZOJ 1562 [NOI2009]变换序列:二分图匹配