CodeForces 711D Directed Roads (DFS判环+计数)

Posted dwtfukgv

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CodeForces 711D Directed Roads (DFS判环+计数)相关的知识,希望对你有一定的参考价值。

题意:给定一个有向图,然后你可能改变某一些边的方向,然后就形成一种新图,让你求最多有多少种无环图。

析:假设这个图中没有环,那么有多少种呢?也就是说每一边都有两种放法,一共有2^x种,x是边数,那么如果有环呢?假设x是这个连通块的边数,

y是这个环的边数,那么就一共有2^x * (2 ^ y - 2) 种,减去这两种就是一边也不变,和所有的边都就变,这样就形成环了。

那么怎么计算呢?这个题的边很特殊,所以我们可以利用这个特征,我们在每个连通块时,用vis记录一下开始的父结点,用cnt记录每一个到每个点的深度,

然后如果产生环了,那么我们就可以很轻松的算出这个环的结点数,用当前的cnt减去就好,然后用sum记录一下环结点的总数,

最后用n减去环中的结点数,就剩下不是环的结点数了。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <list>
#include <sstream>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 2e5 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
int vis[maxn];
int a[maxn], cnt[maxn];
LL ans;
int sum;

LL quick_pow(LL a, LL b){
    LL ans = 1;
    while(b){
        if(b & 1)  ans = (ans * a) % mod;
        b >>= 1;
        a = (a * a) % mod;
    }
    return ans;
}

void dfs(int d, int u, int fa){
    vis[u] = fa;
    cnt[u] = d;
    if(!vis[a[u]])  dfs(d+1, a[u], fa);
    else if(vis[a[u]] == fa){
        sum += cnt[u]-cnt[a[u]]+1;
        ans = (ans * (quick_pow(2LL, cnt[u]-cnt[a[u]]+1) - 2 + mod)) % mod;
    }
}

int main(){
    while(scanf("%d", &n) == 1){
        memset(vis, 0, sizeof vis);
        memset(cnt, 0, sizeof cnt);
        for(int i = 1; i <= n; ++i)  scanf("%d", &a[i]);

        ans = 1, sum = 0;
        for(int i = 1; i <= n; ++i){
            if(vis[i])  continue;
            dfs(0, i, i);
        }

        ans = (ans * quick_pow(2LL, n-sum)) % mod;
        cout << ans << endl;
    }
    return 0;
}

 

以上是关于CodeForces 711D Directed Roads (DFS判环+计数)的主要内容,如果未能解决你的问题,请参考以下文章

CF711D Directed Roads

Codeforces 711 D. Directed Roads (DFS判环)

Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths

Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths

Codeforces Round #369 (Div. 2)-D Directed Roads

Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)