基于mykernel 2.0编写一个操作系统内核

Posted liuan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于mykernel 2.0编写一个操作系统内核相关的知识,希望对你有一定的参考价值。

------------恢复内容开始------------

一、实验要求

  1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
  2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel提供的范例代码;
  3. 简要分析操作系统内核核心功能及运行工作机制。

二。本机环境:VMware Workstation+虚拟机Ubuntu 18.04.4 LTS amd64。

三、实验步骤:

1)下载Linux内核并进行配置、运行:

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch(这一步从群里下载直接复制过来即可)
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on \'x86_64_defconfig\'
make -j$(nproc)
sudo apt install qemu # install QEMU
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

2)模拟器运行结果如下:

 

 

 

 就可以看到QEMU窗⼝输出的内容的代码mymain.c和myinterrupt.c ,当前有⼀个虚拟的CPU执⾏C代码的上下⽂环境,可以看到mymain.c中的代码在不停地执⾏。同时有⼀个中断处理程序的上下⽂环境,周期性地产⽣的时钟中断信号,能够触发myinterrupt.c中的代码。这样就通过Linux内核代码模拟了⼀个具有时钟中断和C代码执⾏环境的硬件平台。

打开mykernel文件夹下的mymain.c以及myinterrupt.c文件,可以看到里面的代码有如下几段:

mymain.c中是一个死循环,不断输出"my_start_kernel here %d \\n",myinterrupt.c中则不断输出时钟中断"my_timer_handler here"。而根据之前qemu的运行结果,可以看出进程和时钟中断不断的交替运行。而我们要做的事情就是写一个自己的进程控制块以及进程调度算法,从而实现模拟多个进程调度运行。

void __init my_start_kernel(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%100000 == 0)
            printk(KERN_NOTICE "my_start_kernel here  %d \\n",i);
    }
}

  

void my_timer_handler(void)
{
    printk(KERN_NOTICE "\\n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<\\n\\n");
}

 

3)基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

a.首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义,在Linux内核中是struct tast_struct结构体

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8                 //进程堆栈大小

/* CPU-specific state of this task */
struct Thread {                        //存储ip,sp
    unsigned long ip;
    unsigned long sp;
};

typedef struct PCB{
    int pid;                //进程的id
    volatile long state;    //表示进程的状态,-1表示就绪状态,0表示运行状态,1表示阻塞状态
    char stack[KERNEL_STACK_SIZE];    //内核堆栈
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long task_entry;        //指定的进程入口,平时入口为main函数
    struct PCB *next;                //指向下一个进程控制块的指针,进程控制块间用链表连接
}tPCB;

void my_schedule(void);         //函数调度

b对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度:

#include "mypcb.h"


tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;


void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\\n\\t"  /* set task[pid].thread.sp to rsp */
        "pushq %1\\n\\t"          /* push rbp */
        "pushq %0\\n\\t"          /* push task[pid].thread.ip */
        "ret\\n\\t"              /* pop task[pid].thread.ip to rip */
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
    );
}

void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\\n",my_current_task->pid);
        }
    }
}

c.对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现:

#include "mypcb.h"


extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;


/*
 * Called by timer interrupt.
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\\n");
        my_need_sched = 1;
    }
    time_count ++ ;
    return;
}


void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;


    if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
      return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
      my_current_task = next;
      printk(KERN_NOTICE ">>>switch %d to %d<<<\\n",prev->pid,next->pid);
      /* switch to next process */
      asm volatile(
         "pushq %%rbp\\n\\t"       /* save rbp of prev */
         "movq %%rsp,%0\\n\\t"     /* save rsp of prev */
         "movq %2,%%rsp\\n\\t"     /* restore  rsp of next */
         "movq $1f,%1\\n\\t"       /* save rip of prev */
         "pushq %3\\n\\t"
         "ret\\n\\t"               /* restore  rip of next */
         "1:\\t"                  /* next process start here */
         "popq %%rbp\\n\\t"
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }
    return;
}

4)重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换

结果如下:

 

 

四。简要分析操作系统内核核心功能及运行工作机制

系统工作机制简要分析:

系统启动后,首先运行mymain.c中的my_start_kernel函数,里面是一个while(1) 循环,永远执行下去。

然后是myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复。

进程切换核心代码分析:

asm volatile(
         "pushq %%rbp\\n\\t"       /* 1 save rbp of prev */ 
         "movq %%rsp,%0\\n\\t"     /* 2 save rsp of prev */
         "movq %2,%%rsp\\n\\t"     /* 3 restore  rsp of next */
         "movq $1f,%1\\n\\t"       /* 4 save rip of prev */
         "pushq %3\\n\\t"        /* 5 save rip of next */   
         "ret\\n\\t"               /* 6 restore  rip of next */
         "1:\\t"                  /* 7 next process start here */
         "popq %%rbp\\n\\t"        /* 8 restore rbp of next  */
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }

步骤1,2 保存了前一个进程的rbp和rsp,期中rbp保存在栈中,rsp保存在pcb.sp中

步骤3 更换了进程栈,原本rsp指向前一个进程的栈,步骤3后指向了后一个进程的栈

步骤4 将$1f 保存到了前一个线程的pcb.ip中(可以看做是保存当前进程的ip)

步骤5,6 修改当前rip寄存器的值,相当于原来rip的内容为前一个进程的指令地址,现在为后一个进程的指令地址

步骤7,8 将rbp寄存器的值修改为下一个进程的栈底

以上是关于基于mykernel 2.0编写一个操作系统内核的主要内容,如果未能解决你的问题,请参考以下文章

基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核