基于mykernel 2.0编写一个操作系统内核
Posted 下饭java学习者
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于mykernel 2.0编写一个操作系统内核相关的知识,希望对你有一定的参考价值。
一 、配置mykernel 2.0
实验环境:VMware+虚拟机Ubuntu 18.04.1 LTS amd64
配置命令:
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz //解压 tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev make defconfig 10 make -j$(nproc) sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage
配置成功后结果如下,从qemu窗口中可以看到my_start_kernel在执行:
二、基于mykernel 2.0编写一个操作系统内核并进行分析
1 首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义。
结构体Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp
/* * linux/mykernel/mypcb.h */ //最大的任务数 #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ char stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; //调度函数 void my_schedule(void);
2 对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。
#include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = -1; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\\n\\t" /* set task[pid].thread.sp to rsp */ "pushq %1\\n\\t" /* push rbp */ "pushq %0\\n\\t" /* push task[pid].thread.ip */ "ret\\n\\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\\n",my_current_task->pid); } } }
3 对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现
#include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\\n\\t" /* save rbp of prev */ "movq %%rsp,%0\\n\\t" /* save rsp of prev */ "movq %2,%%rsp\\n\\t" /* restore rsp of next */ "movq $1f,%1\\n\\t" /* save rip of prev */ "pushq %3\\n\\t" "ret\\n\\t" /* restore rip of next */ "1:\\t" /* next process start here */ "popq %%rbp\\n\\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
4 重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换
三、执行流程分析
系统启动后,首先运行mymain.c中的my_start_kernel函数,里面是一个while(1) 循环,永远执行下去。然后是myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复。
以上是关于基于mykernel 2.0编写一个操作系统内核的主要内容,如果未能解决你的问题,请参考以下文章