sat求解器是一个大数据系统
Posted 海阔凭鱼跃越
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sat求解器是一个大数据系统相关的知识,希望对你有一定的参考价值。
Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers
7 Interpretation of Results
(1)What is special about the class of variables that VSIDS chooses to additively bump? 译文:vsid选择的这类变量有什么特别之处?
In the VSIDS vs. TGC experiments (Sect. 4), we used the Spearman’s rank correlation coefficient to show that the VSIDS and TGC rankings are strongly correlated.
译文:在VSIDS与TGC的实验中(第4节),我们使用Spearman的等级相关系数来表明VSIDS与TGC的等级具有很强的相关性。
From our experiments, we can say that for all the VSIDS variants considered in this paper, additive bumping matches with the increase in centrality of the chosen variables.
译文:从我们的实验中可以看出,对于本文考虑的所有VSIDS变量,加性凸点都与所选变量中心性的增加相匹配。
We also observe from our results that the variables that solvers pick for branching have very high TGC rank. The concept of centrality allows us to define in a mathematically precise the intuition many solver developers have had, i.e., that branching on “highly constrained variables” is an effective strategy.
译文:我们还从结果中观察到,求解者为分支选择的变量具有非常高的TGC秩。中心性的概念允许我们以精确的数学方式定义许多求解程序开发人员具有的直觉,即,在“高度约束变量”上进行分支是一种有效的策略。
Our bridge variable experiment combined with the TGC experiment suggests that VSIDS focuses on high-centrality bridge variables.
译文:我们的桥梁变量实验结合TGC实验表明,vsid侧重于高中心性桥梁变量。
8 Related Work
Marques-Silva and Sakallah are credited with inventing the CDCL technique [34]. The original VSIDS heuristic was invented by the authors of Chaff [36].
Armin Biere [8] described the low-pass filter behavior of VSIDS, and Huang et al. [26] stated that VSIDS is essentially an EMA.
译文:Armin Biere[8]描述了VSIDS的低通滤波行为,Huang等人[26]认为VSIDS本质上是EMA(指数移动平均)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Katsirelos and Simon [30] were the first to publish a connection between eigenvector centrality and branching heuristics. In their paper [30], the authors computed eigenvector centrality (via Google PageRank) only once on the original input clauses and showed that most of the decision variables have higher than average centrality.
译文:Katsirelos和Simon[30]首先发表了特征向量中心性和分支启发法之间的联系。
译文:作者对原始输入子句仅计算了一次特征向量中心性(通过谷歌PageRank),结果表明大多数决策变量的中心性高于平均中心性。
Also, it bears stressing that their definition of centrality is not temporal. By contrast, our results correlate VSIDS ranking with temporal degree and eigenvector centrality, and show the correlation holds dynamically throughout the run of the solver.
译文:此外,它还需要强调,它们对中心性的定义不是暂时的。
译文:我们的结果将vsid排序与时间度和特征向量的中心性联系起来,并在整个求解过程中动态地展示了相关性。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Also, we noticed that the correlation is also significantly stronger after extending centrality with temporality. Simon and Katsirelos do hypothesize that VSIDS may be picking bridge variables (they call them fringe variables). However, they do not provide experimental evidence for this.
译文:此外,我们注意到,在将中心性与时间性延长后,相关性也显著增强。Simon和Katsirelos假设vsid可能会选择桥接变量(他们称之为边缘变量)。然而,他们并没有为此提供实验证据。
To the best of our knowledge, we are the first to establish the following results regarding VSIDS: first, VSIDS picks, bumps, and learns high-centrality bridge variables; second, VSIDS-influenced search is more spatially and temporally focused than other branching heuristics we considered; third, explain the importance of EMA (multiplicative decay) to the effectiveness of VSIDS; and fourth, invent a new adaptive VSIDS branching heuristic based on our observations.
译文:据我们所知,我们首先确定了关于vsid的下列结果:
译文:首先,vsid挑选、颠簸和学习高中心性桥接变量;
译文:其次,与我们考虑的其他分支启发法相比,受vsid影响的搜索更关注空间和时间;
译文:第三,解释EMA(乘法衰减)对vsid有效性的重要性(本质上是指数平滑的一种形式);
译文:基于我们的观察,发明一种新的自适应vsid分支启发法。
以上是关于sat求解器是一个大数据系统的主要内容,如果未能解决你的问题,请参考以下文章