最全加密算法之对称加密和非对称加密
Posted 冰糖葫芦三剑客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最全加密算法之对称加密和非对称加密相关的知识,希望对你有一定的参考价值。
常见加密算法 :
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和 RC4:用变长密钥对大量数据进行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)国际数据加密算法:使用 128 位密钥提供非常强的安全性;
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法;
BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
其它算法,如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。 比如说,MD5,你在一些比较正式而严格的网站下的东西一般都会有MD5值给出,如安全焦点的软件工具,每个都有MD5。严格来说MD5并不能算是一种加密算法,只能说是一种摘要算法(数据摘要算法是密码学算法中非常重要的一个分支,它通过对所有数据提取指纹信息以实现数据签名、数据完整性校验等功能,由于其不可逆性,有时候会被用做敏感信息的加密。数据摘要算法也被称为哈希(Hash)算法、散列算法。)
MD5分类:
1、CRC8、CRC16、CRC32
CRC(Cyclic Redundancy Check,循环冗余校验)算法出现时间较长,应用也十分广泛,尤其是通讯领域,现在应用最多的就是 CRC32 算法,它产生一个4字节(32位)的校验值,一般是以8位十六进制数,如FA 12 CD 45等。CRC算法的优点在于简便、速度快,严格的来说,CRC更应该被称为数据校验算法,但其功能与数据摘要算法类似,因此也作为测试的可选算法。
在 WinRAR、WinZIP 等软件中,也是以 CRC32 作为文件校验算法的。一般常见的简单文件校验(Simple File Verify – SFV)也是以 CRC32算法为基础,它通过生成一个后缀名为 .SFV 的文本文件,这样可以任何时候可以将文件内容 CRC32运算的结果与 .SFV 文件中的值对比来确定此文件的完整性。
与 SFV 相关工具软件有很多,如MagicSFV、MooSFV等。
2、MD2 、MD4、MD5
这是应用非常广泛的一个算法家族,尤其是 MD5(Message-Digest Algorithm 5,消息摘要算法版本5),它由MD2、MD3、MD4发展而来,由Ron Rivest(RSA公司)在1992年提出,被广泛应用于数据完整性校验、数据(消息)摘要、数据加密等。MD2、MD4、MD5 都产生16字节(128位)的校验值,一般用32位十六进制数表示。MD2的算法较慢但相对安全,MD4速度很快,但安全性下降,MD5比MD4更安全、速度更快。
在互联网上进行大文件传输时,都要得用MD5算法产生一个与文件匹配的、存储MD5值的文本文件(后缀名为 .md5或.md5sum),这样接收者在接收到文件后,就可以利用与 SFV 类似的方法来检查文件完整性,绝大多数大型软件公司或开源组织都是以这种方式来校验数据完整性,而且部分操作系统也使用此算法来对用户密码进行加密,另外,它也是目前计算机犯罪中数据取证的最常用算法。
与MD5 相关的工具有很多,如 WinMD5等。
3、SHA1、SHA256、SHA384、SHA512
SHA(Secure Hash Algorithm)是由美国专门制定密码算法的标准机构-- 美国国家标准技术研究院(NIST)制定的,SHA系列算法的摘要长度分别为:SHA为20字节(160位)、SHA256为32字节(256位)、 SHA384为48字节(384位)、SHA512为64字节(512位),由于它产生的数据摘要的长度更长,因此更难以发生碰撞,因此也更为安全,它是未来数据摘要算法的发展方向。由于SHA系列算法的数据摘要长度较长,因此其运算速度与MD5相比,也相对较慢。
SHA1的应用较为广泛,主要应用于CA和数字证书中,另外在互联网中流行的BT软件中,也是使用SHA1来进行文件校验的。
4、RIPEMD、PANAMA、TIGER、ADLER32 等
RIPEMD是Hans Dobbertin等3人在对MD4,MD5缺陷分析基础上,于1996年提出来的,有4个标准128、160、256和320,其对应输出长度分别为16字节、20字节、32字节和40字节。
TIGER由Ross在1995年提出。Tiger号称是最快的Hash算法,专门为64位机器做了优化。
常用的加密算法有对称加密和非对称加密两大类型:
对称加密
简介:
对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性至关重要。
特点:
对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。
不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。而与公开密钥加密算法比起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使用范围有所缩小。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。
具体算法:DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。
原理应用:对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去--如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。
对称加密算法中最经典的算法莫过于DES加密算法。DES加密采用的是分组加密的方法,使用56位密钥加密64位明文,最后产生64位密文。DES算法的基本流程如图6-2所示。
图6-2 DES加密算法基本流程
现在对图6-2的整个流程做简要的分析。DES对64位的明文分组M进行操作,M经过一个初始置换IP置换成m0,将m0明文分成左半部分和右半部分m0=(L0,R0),各32位长。然后进行16轮完全相同的运算,这些运算称为函数f,在运算过程中,数据与密匙结合。经过16轮运算之后,可以看到第16轮运算,将右侧第15轮运算的结果(R15)作为左侧运算的最终结果(L16),而右侧最后的结果(R16)为左侧第15轮运算结果(L15)和函数f运算结果的异或运算所得。此后,再将左、右部分合在一起经过一个逆置换,输出密文。
实际加密过程要分成两个同时进行的过程,即加密过程和密钥生成过程,如图6-3所示。结合图6-2和图6-3简单讲解密钥生成过程。
图6-3 加密与密钥生成
如图6-3所示,在16轮循环的每一轮中,密匙位移位,然后再从密匙的64位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作替代成新的32位数据,在将其置换一次。这四步运算构成了图6-2中的函数f。然后,通过另一个异或运算,函数f的输出与左半部分结合,其结果成为新的右半部分,原来的右半部分成为新的左半部分。该操作重复16次。
DES算法的解密过程和加密过程几乎完全相同,只是使用密钥的顺序相反。
关于DES算法的更加详细的细节不在本书的讲解范围之内,请读者参考相关资料。
NIST(National Institute of Standards and Technology,美国国家标准技术研究院)在1999年发布了新的DES加密标准,3DES取代DES成为新的加密标准。3DES采用168位的密钥,三重加密,但速度较慢。之后,又出现了AES(Advanced Encryption Standard,先进加密标准)等高级对称机密算法。
TripleDES加密算法
以上是关于最全加密算法之对称加密和非对称加密的主要内容,如果未能解决你的问题,请参考以下文章