Lucene的分析资料

Posted Thinker

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Lucene的分析资料相关的知识,希望对你有一定的参考价值。

 

Lucene 源码剖析

1 目录

2 Lucene是什么

2.1.1 强大特性

2.1.2 API组成-

2.1.3 Hello World!

2.1.4 Lucene roadmap

3 索引文件结构

3.1 索引数据术语和约定 -

3.1.1 术语定义

3.1.2 倒排索引(inverted indexing)

3.1.3 Fields的种类

3.1.4 片断(segments)

3.1.5 文档编号(document numbers)

3.1.6 索引结构概述

3.1.7 索引文件中定义的数据类型 -

3.2 索引文件结构

3.2.1 索引文件概述

3.2.2 每个Index包含的文件

3.2.2.1 Segments文件

3.2.2.2 Lock文件

3.2.2.3 Deletable文件

3.2.2.4 Compound文件(.cfs)

3.2.3 每个Segment包含的文件

3.2.3.1 Field信息(.fnm)

3.2.3.2 Field数据(.fdx和.fdt)

3.2.3.3 Term字典(.tii和.tis)

3.2.3.4 Term频率数据(.frq)

3.2.3.5 Positions位置信息数据(.prx)

3.2.3.6 Norms调节因子文件(.nrm)-

3.2.3.7 Term向量文件  -

3.2.3.8 删除的文档 (.del)

3.3 局限性(Limitations)

4 索引是如何创建的

4.1 索引创建示例

4.2 索引创建类IndexWriter

4.2.1 org.apache.lucene.index.IndexWriter

4.2.2 org.apache.lucene.index.DocumentsWriter

4.2.3 org.apache.lucene.index.SegmentMerger -

5 数据是如何存储的

5.1 数据存储类Directory

5.1.1 org.apache.lucene.store.Directory

5.1.2 org.apache.lucene.store.FSDirectory

5.1.3 org.apache.lucene.store.RAMDirectory

5.1.4 org.apache.lucene.store.IndexInput

5.1.5 org.apache.lucene.store.IndexOutput

6 文档内容是如何分析的

6.1 文档分析类Analyzer

6.1.1 org.apache.lucene.store.Analyzer

6.1.2 org.apache.lucene.store.StandardAnalyzer -

7 如何给文档评分

7.1 文档评分类Similarity

7.1.1 org.apache.lucene.search.Similarity

7.2 Similarity评分公式

1Lucene是什么

Apache Lucene是一个高性能(high-performance)的全能的全文检索(full-featured text search engine)的搜索引擎框架库,完全(entirely)使用Java开发。它是一种技术(technology),适合于(suitable for)几乎(nearly)任何一种需要全文检索(full-text search)的应用,特别是跨平台(cross-platform)的应用。

wpsBEFC.tmp

Lucene 通过一些简单的接口(simple API)提供了强大的特征(powerful features):

可扩展的高性能的索引能力(Scalable, High-Performance Indexing

ü 超过20M/分钟的处理能力(Pentium M 1.5GHz)

ü 很少的RAM内存需求,只需要1MB heap

ü 增量索引(incremental indexing)的速度与批量索引(batch indexing)的速度一样快

ü 索引的大小粗略(roughly)为被索引的文本大小的20-30%

强大的精确的高效率的检索算法(Powerful, Accurate and Efficient Search Algorithms

ü 分级检索(ranked searching)能力,最好的结果优先推出在前面

ü 很多强大的query种类:phrase queries, wildcard queries, proximity queries, range queries等

ü 支持域检索(fielded searching),如标题、作者、正文等

ü 支持日期范围检索(date-range searching)

ü 可以按任意域排序(sorting by any field)

ü 支持多个索引的检索(multiple-index searching)并合并结果集(merged results)

ü 允许更新和检索(update and searching)并发进行(simultaneous)

跨平台解决方案(Cross-Platform Solution

ü 以Open Source方式提供并遵循Apache License,允许你可以在即包括商业应用也包括Open Source程序中使用Lucene

ü 100%-pure Java(纯Java实现)

ü 提供其他开发语言的实现版本并且它们的索引文件是兼容的

Lucene API被分成(divide into)如下几种包(package)

· org.apache.lucene.analysis

定义了一个抽象的Analyser API,用于将text文本从一个java.io.Reader转换成一个TokenStream,即包括一些Tokens的枚举容器(enumeration)。一个TokenStream的组成(compose)是通过在一个Tokenizer的输出的结果上再应用TokenFilters生成的。一些少量的Analysers实现已经提供,包括StopAnalyzer和基于语法(gramar-based)分析的StandardAnalyzer。

· org.apache.lucene.document

提供一个简单的Document类,一个document只不过包括一系列的命名了(named)的Fields(域),它们的内容可以是文本(strings)也可以是一个java.io.Reader的实例。

· org.apache.lucene.index

提供两个主要类,一个是IndexWriter用于创建索引并添加文档(document),另一个是IndexReader用于访问索引中的数据。

· org.apache.lucene.search

提供数据结构(data structures)来呈现(represent)查询(queries):TermQuery用于单个的词(individual words),PhraseQuery用于短语,BooleanQuery用于通过boolean关系组合(combinations)在一起的queries。而抽象的Searcher用于转变queries为命中的结果(hits)。IndexSearcher实现了在一个单独(single)的IndexReader上检索。

· org.apache.lucene.queryParser

使用JavaCC实现一个QueryParser。

· org.apache.lucene.store

定义了一个抽象的类用于存储呈现的数据(storing persistent data),即Directory(目录),一个收集器(collection)包含了一些命名了的文件(named files),它们通过一个IndexOutput来写入,以及一个IndexInput来读取。提供了两个实现,FSDirectory使用一个文件系统目录来存储文件,而另一个RAMDirectory则实现了将文件当作驻留内存的数据结构(memory-resident data structures)。

· org.apache.lucene.util

包含了一小部分有用(handy)的数据结构,如BitVector和PriorityQueue等。

2Hello World!

下面是一段简单的代码展示如何使用Lucene来进行索引和检索(使用JUnit来检查结果是否是我们预期的):

1wpsBF0D.tmp // Store the index in memory:
2wpsBF0E.tmp    Directory directory = new RAMDirectory();
3wpsBF1E.tmp // To store an index on disk, use this instead:
4wpsBF1F.tmp    //Directory directory = FSDirectory.getDirectory(”/tmp/testindex”);
5wpsBF30.tmp    IndexWriter iwriter = new IndexWriter(directory, analyzer, true);
6wpsBF31.tmp    iwriter.setMaxFieldLength(25000);
7wpsBF32.tmp    Document doc = new Document();
8wpsBF43.tmp    String text = “This is the text to be indexed.“;
9wpsBF44.tmp    doc.add(new Field(“fieldname“, text, Field.Store.YES,
10wpsBF54.tmp        Field.Index.TOKENIZED));
11wpsBF55.tmp    iwriter.addDocument(doc);
12wpsBF66.tmp    iwriter.optimize();
13wpsBF67.tmp    iwriter.close();
14wpsBF68.tmp
15wpsBF78.tmp // Now search the index:
16wpsBF79.tmp    IndexSearcher isearcher = new IndexSearcher(directory);
17wpsBF8A.tmp // Parse a simple query that searches for ”text”:
18wpsBF8B.tmp    QueryParser parser = new QueryParser(“fieldname“, analyzer);
19wpsBF9C.tmp    Query query = parser.parse(“text“);
20wpsBF9D.tmp    Hits hits = isearcher.search(query);
21wpsBFAD.tmp    assertEquals(1, hits.length());
22wpsBFAE.tmp // Iterate through the results:
23wpsBFAF.tmpwpsBFC0.tmp for (int i = 0; i < hits.length(); i++) wpsBFC1.tmp{
24wpsBFD1.tmp      Document hitDoc = hits.doc(i);
25wpsBFD2.tmp      assertEquals(“This is the text to be indexed.“, hitDoc.get(“fieldname“));
26wpsBFE3.tmp    }
27wpsBFE4.tmp    isearcher.close();
28wpsBFE5.tmp    directory.close();

为了使用Lucene,一个应用程序需要做如下几件事:

1. 通过添加一系列Fields来创建一批Documents对象。

2. 创建一个IndexWriter对象,并且调用它的AddDocument()方法来添加进Documents。

3. 调用QueryParser.parse()处理一段文本(string)来建造一个查询(query)对象。

4. 创建一个IndexReader对象并将查询对象传入到它的search()方法中。

3Lucene Roadmap

wpsBFF6.tmp

Lucene 源码剖析

2索引文件

为了使用Lucene来索引数据,首先你得把它转换成一个纯文本(plain-text)tokens的数据流(stream),并通过它创建出Document对象,其包含的Fields成员容纳这些文本数据。一旦你准备好些Document对象,你就可以调用IndexWriter类的addDocument(Document)方法来传递这些对象到Lucene并写入索引中。当你做这些的时候,Lucene首先分析(analyzer)这些数据来使得它们更适合索引。详见《Lucene In Action》

wpsBFF7.tmp

下面先了解一下索引结构的一些术语。

2.1       索引数据术语和约定

2.1.1    术语定义

Lucene中基本的概念(fundamental concepts)是index、Document、Field和term。

1  一条索引(index)包含(contains)了一连串(a sequence of)文档(documents)。

2  一个文档(document)是由一连串fields组成。

3  一个field是由一连串命名了(a named sequence of)的terms组成。

4  一个term是一个string(字符串)。

相同的字符串(same string)但是在两个不同的fields中被认为(considered)是不同的term。因此(thus)term被描述为(represent as)一对字符串(a pair of strings),第一个string取名(naming)为该field的名字,第二个string取名为包含在该field中的文本(text within the field)。

2.1.2    倒排索引(inverted indexing)

索引(index)存储terms的统计数据(statistics about terms),为了使得基于term的检索(term-based search)效率更高(more efficient)。Lucene的索引分成(fall into)被广为熟悉的(known as)索引种类(family of indexex)叫做倒排索引(inverted index)。这是因为它可以列举(list),对一个term来说,所有包含它的文档(documents that contain it)。这与自然关联规则(natural relationship)是相反,即由documents列举它所包含的terms。

2.1.3    Fields的种类

在Lucene中,fields可以被存储(stored),在这种情况(in which case)下它们的文本被逐字地(literally)以一种非倒排的方式(in non-inverted manner)存储进index中。那些被倒排的fields(that are inverted)称为(called)被索引(indexed)。一个field可以都被存储(stored)并且被索引(indexed)。

一个field的文本可以被分解为(be tokenized into)terms以便被索引(indexed),或者field的文本可以被逐字地使用为(used literally as)一个term来被索引(be indexed)。大多数fields被分解(be tokenized),但是有时候对某种唯一性(certain identifier)的field来逐字地索引(be indexed literally)又是非常有用的,如url。

2.1.4    片断(segments)

Lucene的索引可以由多个复合的子索引(multiple sub-indexes)或者片断(segments)组成(be composed of)。每一个segment都是一个完全独立的索引(fully independent index),它能够被分离地进行检索(be searched seperately)。索引按如下方式进行演化(evolve):

1. 为新添加的文档(newly added documents)创建新的片断(segments)。

2. 合并已存在的片断(merging existing segments)。

检索可以涉及(involve)多个复合(multiple)的segments,并且/或者多个复合(multiple)的indexes。每一个index潜在地(potentially)包含(composed of)一套(a set of)segments。

wpsC007.tmp

2.1.5    文档编号(document numbers)

在内部(internally),Lucene通过一个整数的(interger)文档编号(document number)来表示文档。第一篇被添加到索引中的文档编号为0(be numbered zero),每一篇随后(subsequent)被添加的document获得一个比前一篇更大的数字(a number one greater than the previous)。

需要注意的是一篇文档的编号(document’s number)可以更改,所以在Lucene之外(outside of)存储这些编号时需要特别小心(caution should be taken)。详细地说(in particular),编号在如下的情况(following situations)可以更改:

1  存储在每个segment中的编号仅仅是在所在的segment中是唯一的(unique),在它能够被使用在(be used in)一个更大的上下文(a larger context)中前必须被转变(converted)。标准的技术(standard technique)是给每一个segment分配(allocate)一个范围的值(a range of values),基于该segment所使用的编号的范围(the range of numbers)。为了将一篇文档的编号从一个segment转变为一个扩展的值(an external value),该片断的基础的文档编号(base document number)被添加(is added)。为了将一个扩展的值(external value)转变回一个segment的特定的值(specific value),该segment将该扩展的值所在的范围标识出来(be indentified),并且该segment的基础值(base value)将被减少(substracted)。例如,两个包含5篇文档的segments可能会被合并(combined),所以第一个segment有一个基础的值(base value)为0,第二个segment则为5。在第二个segment中的第3篇文档(document three from the second segment)将有一个扩展的值为8。

2  当文档被删除的时候,在编号序列中(in the numbering)将产生(created)间隔段(gaps)。这些最后(eventually)在索引通过合并演进时(index evolves through merging)将会被清除(removed)。当segments被合并后(merged),已删除的文档将会被丢弃(dropped),一个刚被合并的(freshly-merged)segment因此在它的编号序列中(in its numbering)不再有间隔段(gaps)。

2.1.6    索引结构概述

每一个片断的索引(segment index)管理(maintains)如下的数据:

Fields名称:这包含了(contains)在索引中使用的一系列fields的名称(the set of field names)。

已存储的field的值:它包含了,对每篇文档来说,一个属性-值数据对(attribute-value pairs)的清单(a list of),其中属性即为field的名字。这些被用来存储关于文档的备用信息(auxiliary information),比如它的标题(title)、url、或者一个访问一个数据库(database)的唯一标识(identifier)。这套存储的fields就是那些在检索时对每一个命中的(hits)文档所返回的(returned)信息。这些是通过文档编号(document number)来做为key得到的。

Term字典(dictionary):一个包含(contains)所有terms的字典,被使用在所有文档中所有被索引的fields中。它还包含了该term所在的文档的数目(the number of documents which contains the term),并且指向了(pointer to)term的频率(frequency)和接近度(proximity)的数据(data)。

Term频率数据(frequency data):对字典中的每一个term来说,所有包含该term(contains the term)的文档的编号(numbers of all documents),以及该term出现在该文档中的频率(frequency)。

Term接近度数据(proximity data):对字典中的每一个term来说,该term出现在(occur)每一篇文档中的位置(positions)。

调整因子(normalization factors):对每一篇文档的每一个field来说,为一个存储的值(a value is stored)用来加入到(multiply into)命中该field的分数(score for hits on that field)中。

Term向量(vectors):对每一篇文档的每一个field来说,term向量(有时候被称做文档向量)可以被存储。一个term向量由term文本和term的频率(frequency)组成(consists of)。怎么添加term向量到你的索引中请参考Field类的构造方法(constructors)。

删除的文档(deleted documents):一个可选的(optional)文件标示(indicating)哪一篇文档被删除。

关于这些项的详细信息在随后的章节(subsequent sections)中逐一介绍。

2.1.7    索引文件中定义的数据类型

数据类型

所占字节长度(字节)

说明

Byte

1

基本数据类型,其他数据类型以此为基础定义

UInt32

4

32位无符号整数,高位优先

UInt64

8

64位无符号整数,高位优先

VInt

不定,最少1字节

动态长度整数,每字节的最高位表明还剩多少字节,每字节的低七位表明整数的值,高位优先。可以认为值可以为无限大。其示例如下

字节1

字节2

字节3

0

00000000

   

1

00000001

   

2

00000010

   

127

01111111

   

128

10000000

00000001

 

129

10000001

00000001

 

130

10000010

00000001

 

16383

10000000

10000000

00000001

16384

10000001

10000000

00000001

16385

10000010

10000000

00000001

Chars

不定,最少1字节

采用UTF-8编码[20]的Unicode字符序列

String

不定,最少2字节

由VInt和Chars组成的字符串类型,VInt表示Chars的长度,Chars则表示了String的值

3.1索引文件结构

  Lucene使用文件扩展名标识不同的索引文件,文件名标识不同版本或者代(generation)的索引片段(segment)。如.fnm文件存储域Fields名称及其属性,.fdt存储文档各项域数据,.fdx存储文档在fdt中的偏移位置即其索引文件,.frq存储文档中term位置数据,.tii文件存储term字典,.tis文件存储term频率数据,.prx存储term接近度数据,.nrm存储调节因子数据,另外segments_X文件存储当前最新索引片段的信息,其中X为其最新修改版本,segments.gen存储当前版本即X值,这些文件的详细介绍上节已说过了。

    下面的图描述了一个典型的lucene索引文件列表:

wpsC018.tmp

如果将它们的关系划成图则如下所示

wpsC019.tmp

这些文件中存储数据的详细结构是怎样的呢,下面几个小节逐一介绍它们,熟悉它们的结构非常有助于优化Lucene的查询和索引效率和存储空间等。

3.2每个Index包含的单个文件

下面几节介绍的文件存在于每个索引index中,并且只有一份。

3.2.1Segments文件

索引中活动(active)的Segments被存储在segment info文件中,segments_N,在索引中可能会包含一个或多个segments_N文件。然而,最大一代的那个文件(the one with largest generation)是活动的片断文件(这时更旧的segments_N文件依然存在(are present)是因为它们暂时(temporarily)还不能被删除,或者,一个writer正在处理提交请求(in the process of committing),或者一个用户定义的(custom)IndexDeletionPolicy正被使用)。这个文件按照名称列举每一个片断(lists each segment by name),详细描述分离的标准(seperate norm)和要删除的文件(deletion files),并且还包含了每一个片断的大小。

对2.1版本来说,还有一个文件segments.gen。这个文件包含了该索引中当前生成的代(current generation)(segments_N中的_N)。这个文件仅用于一个后退处理(fallback)以防止(in case)当前代(current generation)不能被准确地(accurately)通过单独地目录文件列举(by directory listing alone)来确定(determened)(由于某些NFS客户端因为基于时间的目录(time-based directory)的缓存终止(cache expiration)而引起)。这个文件简单地包含了一个int32的版本头(version header)(SegmentInfos.FORMAT_LOCKLESS=-2),遵照代的记录(followed by the generation recorded)规则,对int64来说会写两次(write twice)。

版本

包含的项

数目

类型

描述

2.1之前版本

Format

1

Int32

在Lucene1.4中为-1,而在Lucene 2.1中为-3(SegmentsInfos.FORMAT_SINGLE_NORM_FILE)

Version

1

Int64

统计在删除和添加文档时,索引被更改了多少次。

NameCounter

1

Int32

用于为新的片断文件生成新的名字。

SegCount

1

Int32

片断的数目

SegName

SegCount

String

片断的名字,用于所有构成片断索引的文件的文件名前缀。

SegSize

SegCount

Int32

包含在片断索引中的文档的数目。

2.1及之后版本

Format

1

Int32

在Lucene 2.1和Lucene 2.2中为-3(SegmentsInfos.FORMAT_SINGLE_NORM_FILE)

Version

1

Int64

同上

NameCounter

1

Int32

同上

SegCount

1

Int32

同上

SegName

SegCount

String

同上

SegSize

SegCount

Int32

同上

DelGen

SegCount

Int64

为分离的删除文件的代的数目(generation count of the separate deletes file),如果值为-1,表示没有分离的删除文件。如果值为0,表示这是一个2.1版本之前的片断,这时你必须检查文件是否存在_X.del这样的文件。任意大于0的值,表示有分离的删除文件,文件名为_X_N.del

HasSingleNormFile

SegCount

Int8

该值如果为1,表示Norm域(field)被写为一个单一连接的文件(single joined file)中(扩展名为.nrm),如果值为0,表示每一个field的norms被存储为分离的.fN文件中,参考下面的“标准化因素(Normalization Factors)”

NumField

SegCount

Int32

表示NormGen数组的大小,如果为-1表示没有NormGen被存储。

NormGen

SegCount * NumField

Int64

记录分离的标准文件(separate norm file)的代(generation),如果值为-1,表示没有normGens被存储,并且当片断文件是2.1之前版本生成的时,它们全部被假设为0(assumed to be 0)。而当片断文件是2.1及更高版本生成的时,它们全部被假设为-1。这时这个代(generation)的意义与上面DelGen的意义一样。

IsCompoundFile

SegCount

Int8

记录是否该片断文件被写为一个复合的文件,如果值为-1表示它不是一个复合文件(compound file),如果为1则为一个复合文件。另外如果值为0,表示我们需要检查文件系统是否存在_X.cfs

2.3

Format

1

Int32

在Lucene 2.3中为-4 (SegmentInfos.FORMAT_SHARED_DOC_STORE)

Version

1

Int64

同上

NameCounter

1

Int32

同上

SegCount

1

Int32

同上

SegName

SegCount

String

同上

SegSize

SegCount

Int32

同上

DelGen

SegCount

Int64

同上

DocStoreOffset

1

Int32

如果值为-1则该segment有自己的存储文档的fields数据和term vectors的文件,并且DocStoreSegment, DocStoreIsCompoundFile不会存储。在这种情况下,存储fields数据(*.fdt和*.fdx文件)以及term vectors数据(*.tvf和*.tvd和*.tvx文件)的所有文件将存储在该segment下。另外,DocStoreSegment将存储那些拥有共享的文档存储文件的segment。DocStoreIsCompoundFile值为1如果segment存储为compound文件格式(如.cfx文件),并且DocStoreOffset值为那些共享文档存储文件中起始的文档编号,即该segment的文档开始的位置。在这种情况下,该segment不会存储自己的文档数据文件,而是与别的segment共享一个单一的数据文件集。

[DocStoreSegment]

1

String

如上

[DocStoreIsCompoundFile]

1

Int8

如上

HasSingleNormFile

SegCount

Int8

同上

NumField

SegCount

Int32

同上

NormGen

SegCount * NumField

Int64

同上

IsCompoundFile

SegCount

Int8

同上

2.4及以上

Format

1

Int32

在Lucene 2.4中为-7 (SegmentInfos.FORMAT_HAS_PROX)

Version

1

Int64

同上

NameCounter

1

Int32

同上

SegCount

1

Int32

同上

SegName

SegCount

String

同上

SegSize

SegCount

Int32

同上

DelGen

SegCount

Int64

同上

DocStoreOffset

1

Int32

同上

[DocStoreSegment]

1

String

同上

[DocStoreIsCompoundFile]

1

Int8

同上

HasSingleNormFile

SegCount

Int8

同上

NumField

SegCount

Int32

同上

NormGen

SegCount * NumField

Int64

同上

IsCompoundFile

SegCount

Int8

同上

DeletionCount

SegCount

Int32

记录该segment中删除的文档数目

HasProx

SegCount

Int8

值为1表示该segment中至少一个fields的omitTf设置为false,否则为0

Checksum

1

Int64

存储segments_N文件中直到checksum的所有字节的CRC32 checksum数据,用来校验打开的索引文件的完整性(integrity)。

3.2.2Lock文件

写锁(write lock)文件名为“write.lock”,它缺省存储在索引目录中。如果锁目录(lock directory)与索引目录不一致,写锁将被命名为“XXXX-write.lock”,其中“XXXX”是一个唯一的前缀(unique prefix),来源于(derived from)索引目录的全路径(full path)。当这个写锁出现时,一个writer当前正在修改索引(添加或者清除文档)。这个写锁确保在一个时刻只有一个writer修改索引。

需要注意的是在2.1版本之前(prior to),Lucene还使用一个commit lock,这个锁在2.1版本里被删除了。

3.2.3Deletable文件

在Lucene 2.1版本之前,有一个“deletable”文件,包含了那些需要被删除文档的详细资料。在2.1版本后,一个writer会动态地(dynamically)计算哪些文件需要删除,因此,没有文件被写入文件系统。

3.2.4 Compound文件s(.cfs)

从Lucene 1.4版本开始,compound文件格式成为缺省信息。这是一个简单的容器(container)来服务所有下一章节(next section)描述的文件(除了.del文件),格式如下:

版本

包含的项

数目

类型

描述

1.4之后版本

FileCount

1

VInt

 

DataOffset

FileCount

Long

 

FileName

FileCount

String

 

FileData

FileCount

raw

Raw文件数据是上面命名的所有单个的文件数据(the individual named above)。

结构如下图所示:

wpsC039.tmp

3.3每个Segment包含的文件

剩下的文件(remaining files)都是per-segment(每个片断文件),因此(thus)都用后缀来定义(defined by suffix)。

3.3.1Fields域数据文件

3.3.1.1Field信息(.fnm

Field的名字都存储在Field信息文件中,后缀是.fnm。

文件

包含的项

数目

类型

版本

描述

FieldsInfo(.fnm)

FieldsCount

1

VInt

   

FieldName

FieldsCount

String

   

FieldBits

FieldsCount

Byte

 

最低阶的bit位(low-order bit)值为1表示是被索引的Fields,0表示非索引的Fields。

 

第二个最低阶的bit位(second lowest-order bit)值为1表示该Field有term向量存储(term vectors stored),0表示该field没有term向量。

>=1.9

如果第三个最低阶的bit位(third lowest-order bit)设置(0×04),term的位置(term positions)将和term向量一起被存储(stored with term vectors)。

>=1.9

如果第四个最低阶的bit位(fourth lowest-order bit)设置(0×08),term的偏移(term offsets)将和term向量一起被存储(stored with term vectors)。

>=1.9

如果第五个最低阶的bit位(fifth lowest-order bit)设置(0×10),norms将对索引的field忽略掉(norms are omitted for the indexed field)。

>=1.9

如果第六个最低阶的bit位(sixth lowest-order bit)设置(0×20),payloads将为索引的field存储(payloads are stored for the indexed field)。

注明:payloads概念:

词条载荷(payloads)――允许用户将任意二进制数据和索引中的任意词条(term)相关联。

词条载荷是一个允许信息在索引中按逐词条储存的新特性。例如,当索引Web页面时,储存某个关键词的额外信息可能会很有用,例如这个关键词关联的URL或者经过文字分析后得出的权重系数。在更高级的应用中,为了突出语句中的名次成分相对于其它成分的重要性,储存语句中这个关键词出现的部分可能会很有帮助。我今年在ApacheCon Europe会议上的演讲中就有几张讲述词条载荷的幻灯片,感兴趣的读者可以去看看。

Fields将使用它们在这个文件中的顺序来编号(fields are numbered by their order in this file)。需要注意的是,就像文档编号(document numbers)一样,field编号(field numbers)与片断是相关的(are segment relative)。结构如下图所示:

wpsC04A.tmp

3.3.1.2存储的Field.fdx.fdt

存储的fields(stored fields)通过两个文件来呈现(represented by two files),即field索引文件(.fdx)和field数据文件(.fdt)。

文件

包含的项

父项

数目

类型

版本

描述

Fields Index(.fdx) 对每个文档来说,存储指向它的fields数据的指针(pointer)

FieldValuesPosition

 

SegSize

UInt64

 

用于找详细文档(a particular document)的所有fields的field数据文件中的位置(position),因为它包含的(contains)是固定长度的数据(fixed-length data),这个文件可以很容易地进行随机访问(randomly accessed)。

 

文档n的field数据的位置是在该文件中n*8的位置中(UInt64类型)。<

以上是关于Lucene的分析资料的主要内容,如果未能解决你的问题,请参考以下文章

资料下载《Lucene实战 第2版》

Lucene视频教程全资料完整高清完整资源

lucene对校园网资料的全文检索

好课推荐:Lucene视频教程全资料完整高清完整

MacOS下Lucene学习

java--全文检索框架--Lucene

(c)2006-2024 SYSTEM All Rights Reserved IT常识