EasyPR--开发详解文字定位

Posted 计算机的潜意识

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EasyPR--开发详解文字定位相关的知识,希望对你有一定的参考价值。

 

  今天我们来介绍车牌定位中的一种新方法--文字定位方法(MSER),包括其主要设计思想与实现。接着我们会介绍一下EasyPR v1.5-beta版本中带来的几项改动。

 

一. 文字定位法

  在EasyPR前面几个版本中,最为人所诟病的就是定位效果不佳,尤其是在面对生活场景(例如手机拍摄)时。由于EasyPR最早的数据来源于卡口,因此对卡口数据进行了优化,而并没有对生活场景中图片有较好处理的策略。后来一个版本(v1.3)增加了颜色定位方法,改善了这种现象,但是对分辨率较大的图片处理仍然不好。再加上颜色定位在面对低光照,低对比度的图像时处理效果大幅度下降,颜色本身也是一个不稳定的特征。因此EasyPR的车牌定位的整体鲁棒性仍然不足。

  针对这种现象,EasyPR v1.5增加了一种新的定位方法,文字定位方法,大幅度改善了这些问题。下面几幅图可以说明文字定位法的效果。

   

 图1 夜间的车牌图像(左) , 图2 对比度非常低的图像(右)

 

  

 图3 近距离的图像(左) , 图4 高分辨率的图像(右)


  图1是夜间的车牌图像,图2是对比度非常低的图像,图3是非常近距离拍摄的图像,图4则是高分辨率(3200宽)的图像。

  文字定位方法是采用了低级过滤器提取文字,然后再将其组合的一种定位方法。原先是利用在场景中定位文字,在这里利用其定位车牌。与在扫描文档中的文字不同,自然场景中的文字具有低对比度,背景各异,光亮干扰较多等情况,因此需要一个极为鲁棒的方法去提取出来。目前业界用的较多的是MSER(最大稳定极值区域)方法。EasyPR使用的是MSER的一个改良方法,专门针对文字进行了优化。在文字定位出来以后,一般需要用一个分类器将其中大部分的定位错误的文字去掉,例如ANN模型。为了获得最终的车牌,这些文字需要组合起来。由于实际情况的复杂,简单的使用普通的聚类效果往往不好,因此EasyPR使用了一种鲁棒性较强的种子生长方法(seed growing)去组合。

  我在这里简单介绍一下具体的实现。关于方法的细节可以看代码,有很多的注释(代码可能较长)。关于方法的思想可以看附录的两篇论文。

  1 //! use verify size to first generate char candidates
  2 void mserCharMatch(const Mat &src, std::vector<Mat> &match, std::vector<CPlate>& out_plateVec_blue, std::vector<CPlate>& out_plateVec_yellow,
  3   bool usePlateMser, std::vector<RotatedRect>& out_plateRRect_blue, std::vector<RotatedRect>& out_plateRRect_yellow, int img_index,
  4   bool showDebug) {
  5   Mat image = src;
  6 
  7   std::vector<std::vector<std::vector<Point>>> all_contours;
  8   std::vector<std::vector<Rect>> all_boxes;
  9   all_contours.resize(2);
 10   all_contours.at(0).reserve(1024);
 11   all_contours.at(1).reserve(1024);
 12   all_boxes.resize(2);
 13   all_boxes.at(0).reserve(1024);
 14   all_boxes.at(1).reserve(1024);
 15 
 16   match.resize(2);
 17 
 18   std::vector<Color> flags;
 19   flags.push_back(BLUE);
 20   flags.push_back(YELLOW);
 21 
 22   const int imageArea = image.rows * image.cols;
 23   const int delta = 1;
 24   //const int delta = CParams::instance()->getParam2i();;
 25   const int minArea = 30;
 26   const double maxAreaRatio = 0.05;
 27 
 28   Ptr<MSER2> mser;
 29   mser = MSER2::create(delta, minArea, int(maxAreaRatio * imageArea));
 30   mser->detectRegions(image, all_contours.at(0), all_boxes.at(0), all_contours.at(1), all_boxes.at(1));
 31 
 32   // mser detect 
 33   // color_index = 0 : mser-, detect white characters, which is in blue plate.
 34   // color_index = 1 : mser+, detect dark characters, which is in yellow plate.
 35 
 36 #pragma omp parallel for
 37   for (int color_index = 0; color_index < 2; color_index++) {
 38     Color the_color = flags.at(color_index);
 39 
 40     std::vector<CCharacter> charVec;
 41     charVec.reserve(128);
 42 
 43     match.at(color_index) = Mat::zeros(image.rows, image.cols, image.type());
 44 
 45     Mat result = image.clone();
 46     cvtColor(result, result, COLOR_GRAY2BGR);
 47 
 48     size_t size = all_contours.at(color_index).size();
 49 
 50     int char_index = 0;
 51     int char_size = 20;
 52 
 53     // Chinese plate has max 7 characters.
 54     const int char_max_count = 7;
 55 
 56     // verify char size and output to rects;
 57     for (size_t index = 0; index < size; index++) {
 58       Rect rect = all_boxes.at(color_index)[index];
 59       std::vector<Point>& contour = all_contours.at(color_index)[index];
 60 
 61       // sometimes a plate could be a mser rect, so we could
 62       // also use mser algorithm to find plate
 63       if (usePlateMser) {
 64         RotatedRect rrect = minAreaRect(Mat(contour));
 65         if (verifyRotatedPlateSizes(rrect)) {
 66           //rotatedRectangle(result, rrect, Scalar(255, 0, 0), 2);
 67           if (the_color == BLUE) out_plateRRect_blue.push_back(rrect);
 68           if (the_color == YELLOW) out_plateRRect_yellow.push_back(rrect);
 69         }
 70       }
 71 
 72       // find character
 73       if (verifyCharSizes(rect)) {
 74         Mat mserMat = adaptive_image_from_points(contour, rect, Size(char_size, char_size));
 75         Mat charInput = preprocessChar(mserMat, char_size);
 76         Rect charRect = rect;
 77 
 78         Point center(charRect.tl().x + charRect.width / 2, charRect.tl().y + charRect.height / 2);
 79         Mat tmpMat;
 80         double ostu_level = cv::threshold(image(charRect), tmpMat, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
 81 
 82         //cv::circle(result, center, 3, Scalar(0, 0, 255), 2);
 83 
 84         // use judegMDOratio2 function to
 85         // remove the small lines in character like "zh-cuan"
 86         if (judegMDOratio2(image, rect, contour, result)) {
 87           CCharacter charCandidate;
 88           charCandidate.setCharacterPos(charRect);
 89           charCandidate.setCharacterMat(charInput);
 90           charCandidate.setOstuLevel(ostu_level);
 91           charCandidate.setCenterPoint(center);
 92           charCandidate.setIsChinese(false);
 93           charVec.push_back(charCandidate);
 94         }
 95       }
 96     }
 97 
 98     // improtant, use matrix multiplication to acclerate the 
 99     // classification of many samples. use the character 
100     // score, we can use non-maximum superssion (nms) to 
101     // reduce the characters which are not likely to be true
102     // charaters, and use the score to select the strong seed
103     // of which the score is larger than 0.9
104     CharsIdentify::instance()->classify(charVec);
105 
106     // use nms to remove the character are not likely to be true.
107     double overlapThresh = 0.6;
108     //double overlapThresh = CParams::instance()->getParam1f();
109     NMStoCharacter(charVec, overlapThresh);
110     charVec.shrink_to_fit();
111 
112     std::vector<CCharacter> strongSeedVec;
113     strongSeedVec.reserve(64);
114     std::vector<CCharacter> weakSeedVec;
115     weakSeedVec.reserve(64);
116     std::vector<CCharacter> littleSeedVec;
117     littleSeedVec.reserve(64);
118 
119     //size_t charCan_size = charVec.size();
120     for (auto charCandidate : charVec) {
121       //CCharacter& charCandidate = charVec[char_index];
122       Rect rect = charCandidate.getCharacterPos();
123       double score = charCandidate.getCharacterScore();
124       if (charCandidate.getIsStrong()) {
125         strongSeedVec.push_back(charCandidate);
126       }
127       else if (charCandidate.getIsWeak()) {
128         weakSeedVec.push_back(charCandidate);
129         //cv::rectangle(result, rect, Scalar(255, 0, 255));
130       }
131       else if (charCandidate.getIsLittle()) {
132         littleSeedVec.push_back(charCandidate);
133         //cv::rectangle(result, rect, Scalar(255, 0, 255));
134       }
135     }
136 
137     std::vector<CCharacter> searchCandidate = charVec;
138 
139     // nms to srong seed, only leave the strongest one
140     overlapThresh = 0.3;
141     NMStoCharacter(strongSeedVec, overlapThresh);
142 
143     // merge chars to group
144     std::vector<std::vector<CCharacter>> charGroupVec;
145     charGroupVec.reserve(64);
146     mergeCharToGroup(strongSeedVec, charGroupVec);
147 
148     // genenrate the line of the group
149     // based on the assumptions , the mser rects which are 
150     // given high socre by character classifier could be no doubtly
151     // be the characters in one plate, and we can use these characeters
152     // to fit a line which is the middle line of the plate.
153     std::vector<CPlate> plateVec;
154     plateVec.reserve(16);
155     for (auto charGroup : charGroupVec) {
156       Rect plateResult = charGroup[0].getCharacterPos();
157       std::vector<Point> points;
158       points.reserve(32);
159 
160       Vec4f line;
161       int maxarea = 0;
162       Rect maxrect;
163       double ostu_level_sum = 0;
164 
165       int leftx = image.cols;
166       Point leftPoint(leftx, 0);
167       int rightx = 0;
168       Point rightPoint(rightx, 0);
169 
170       std::vector<CCharacter> mserCharVec;
171       mserCharVec.reserve(32);
172 
173       // remove outlier CharGroup
174       std::vector<CCharacter> roCharGroup;
175       roCharGroup.reserve(32);
176 
177       removeRightOutliers(charGroup, roCharGroup, 0.2, 0.5, result);
178       //roCharGroup = charGroup;
179 
180       for (auto character : roCharGroup) {
181         Rect charRect = character.getCharacterPos();
182         cv::rectangle(result, charRect, Scalar(0, 255, 0), 1);
183         plateResult |= charRect;
184 
185         Point center(charRect.tl().x + charRect.width / 2, charRect.tl().y + charRect.height / 2);
186         points.push_back(center);
187         mserCharVec.push_back(character);
188         //cv::circle(result, center, 3, Scalar(0, 255, 0), 2);
189 
190         ostu_level_sum += character.getOstuLevel();
191 
192         if (charRect.area() > maxarea) {
193           maxrect = charRect;
194           maxarea = charRect.area();
195         }
196         if (center.x < leftPoint.x) {
197           leftPoint = center;
198         }
199         if (center.x > rightPoint.x) {
200           rightPoint = center;
201         }
202       }
203 
204       double ostu_level_avg = ostu_level_sum / (double)roCharGroup.size();
205       if (1 && showDebug) {
206         std::cout << "ostu_level_avg:" << ostu_level_avg << std::endl;
207       }
208       float ratio_maxrect = (float)maxrect.width / (float)maxrect.height;
209 
210       if (points.size() >= 2 && ratio_maxrect >= 0.3) {
211         fitLine(Mat(points), line, CV_DIST_L2, 0, 0.01, 0.01);
212 
213         float k = line[1] / line[0];
214         //float angle = atan(k) * 180 / (float)CV_PI;
215         //std::cout << "k:" << k << std::endl;
216         //std::cout << "angle:" << angle << std::endl;
217         //std::cout << "cos:" << 0.3 * cos(k) << std::endl;
218         //std::cout << "ratio_maxrect:" << ratio_maxrect << std::endl;
219 
220         std::sort(mserCharVec.begin(), mserCharVec.end(),
221           [](const CCharacter& r1, const CCharacter& r2) {
222           return r1.getCharacterPos().tl().x < r2.getCharacterPos().tl().x;
223         });
224 
225         CCharacter midChar = mserCharVec.at(int(mserCharVec.size() / 2.f));
226         Rect midRect = midChar.getCharacterPos();
227         Point midCenter(midRect.tl().x + midRect.width / 2, midRect.tl().y + midRect.height / 2);
228 
229         int mindist = 7 * maxrect.width;
230         std::vector<Vec2i> distVecVec;
231         distVecVec.reserve(32);
232 
233         Vec2i mindistVec;
234         Vec2i avgdistVec;
235 
236         // computer the dist which is the distacne between 
237         // two near characters in the plate, use dist we can
238         // judege how to computer the max search range, and choose the
239         // best location of the sliding window in the next steps.
240         for (size_t mser_i = 0; mser_i + 1 < mserCharVec.size(); mser_i++) {
241           Rect charRect = mserCharVec.at(mser_i).getCharacterPos();
242           Point center(charRect.tl().x + charRect.width / 2, charRect.tl().y + charRect.height / 2);
243 
244           Rect charRectCompare = mserCharVec.at(mser_i + 1).getCharacterPos();
245           Point centerCompare(charRectCompare.tl().x + charRectCompare.width / 2,
246             charRectCompare.tl().y + charRectCompare.height / 2);
247 
248           int dist = charRectCompare.x - charRect.x;
249           Vec2i distVec(charRectCompare.x - charRect.x, charRectCompare.y - charRect.y);
250           distVecVec.push_back(distVec);
251 
252           //if (dist < mindist) {
253           //  mindist = dist;
254           //  mindistVec = distVec;
255           //}
256         }
257 
258         std::sort(distVecVec.begin(), distVecVec.end(),
259           [](const Vec2i& r1, const Vec2i& r2) {
260           return r1[0] < r2[0];
261         });
262 
263         avgdistVec = distVecVec.at(int((distVecVec.size() - 1) / 2.f));
264 
265         //float step = 10.f * (float)maxrect.width;
266         //float step = (float)mindistVec[0];
267         float step = (float)avgdistVec[0];
268 
269         //cv::line(result, Point2f(line[2] - step, line[3] - k*step), Point2f(line[2] + step, k*step + line[3]), Scalar(255, 255, 255));
270         cv::line(result, Point2f(midCenter.x - step, midCenter.y - k*step), Point2f(midCenter.x + step, k*step + midCenter.y), Scalar(255, 255, 255));
271         //cv::circle(result, leftPoint, 3, Scalar(0, 0, 255), 2);
272 
273         CPlate plate;
274         plate.setPlateLeftPoint(leftPoint);
275         plate.setPlateRightPoint(rightPoint);
276 
277         plate.setPlateLine(line);
278         plate.setPlatDistVec(avgdistVec);
279         plate.setOstuLevel(ostu_level_avg);
280 
281         plate.setPlateMergeCharRect(plateResult);
282         plate.setPlateMaxCharRect(maxrect);
283         plate.setMserCharacter(mserCharVec);
284         plateVec.push_back(plate);
285       }
286     }
287 
288     // use strong seed to construct the first shape of the plate,
289     // then we need to find characters which are the weak seed.
290     // because we use strong seed to build the middle lines of the plate,
291     // we can simply use this to consider weak seeds only lie in the 
292     // near place of the middle line
293     for (auto plate : plateVec) {
294       Vec4f line = plate.getPlateLine();
295       Point leftPoint = plate.getPlateLeftPoint();
296       Point rightPoint = plate.getPlateRightPoint();
297 
298       Rect plateResult = plate.getPlateMergeCharRect();
299       Rect maxrect = plate.getPlateMaxCharRect();
300       Vec2i dist = plate.getPlateDistVec();
301       double ostu_level = plate.getOstuLevel();
302 
303       std::vector<CCharacter> mserCharacter = plate.getCopyOfMserCharacters();
304       mserCharacter.reserve(16);
305 
306       float k = line[1] / line[0];
307       float x_1 = line[2];
308       float y_1 = line[3];
309 
310       std::vector<CCharacter> searchWeakSeedVec;
311       searchWeakSeedVec.reserve(16);
312 
313       std::vector<CCharacter> searchRightWeakSeed;
314       searchRightWeakSeed.reserve(8);
315       std::vector<CCharacter> searchLeftWeakSeed;
316       searchLeftWeakSeed.reserve(8);
317 
318       std::vector<CCharacter> slideRightWindow;
319       slideRightWindow.reserve(8);
320       std::vector<CCharacter> slideLeftWindow;
321       slideLeftWindow.reserve(8);
322 
323       // draw weak seed and little seed from line;
324       // search for mser rect
325       if (1 && showDebug) {
326         std::cout << "search for mser rect:" << std::endl;
327       }
328 
329       if (0 && showDebug) {
330         std::stringstream ss(std::stringstream::in | std::stringstream::out);
331         ss << "resources/image/tmp/" << img_index << "_1_" << "searcgMserRect.jpg";
332         imwrite(ss.str(), result);
333       }
334       if (1 && showDebug) {
335         std::cout << "mserCharacter:" << mserCharacter.size() << std::endl;
336       }
337 
338       // if the count of strong seed is larger than max count, we dont need 
339       // all the next steps, if not, we first need to search the weak seed in 
340       // the same line as the strong seed. The judge condition contains the distance 
341       // between strong seed and weak seed , and the rect simily of each other to improve
342       // the roubustnedd of the seed growing algorithm.
343       if (mserCharacter.size() < char_max_count) {
344         double thresh1 = 0.15;
345         double thresh2 = 2.0;
346         searchWeakSeed(searchCandidate, searchRightWeakSeed, thresh1, thresh2, line, rightPoint,
347           maxrect, plateResult, result, CharSearchDirection::RIGHT);
348         if (1 && showDebug) {
349           std::cout << "searchRightWeakSeed:" << searchRightWeakSeed.size() << std::endl;
350         }
351         for (auto seed : searchRightWeakSeed) {
352           cv::rectangle(result, seed.getCharacterPos(), Scalar(255, 0, 0), 1);
353           mserCharacter.push_back(seed);
354         }
355 
356         searchWeakSeed(searchCandidate, searchLeftWeakSeed, thresh1, thresh2, line, leftPoint,
357           maxrect, plateResult, result, CharSearchDirection::LEFT);
358         if (1 && showDebug) {
359           std::cout << "searchLeftWeakSeed:" << searchLeftWeakSeed.size() << std::endl;
360         }
361         for (auto seed : searchLeftWeakSeed) {
362           cv::rectangle(result, seed.getCharacterPos(), Scalar(255, 0, 0), 1);
363           mserCharacter.push_back(seed);
364         }
365       }
366 
367       // sometimes the weak seed is in the middle of the strong seed.
368       // and sometimes two strong seed are actually the two parts of one character.
369       //EasyPR--开发详解颜色定位与偏斜扭转

mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

EasyPR源码剖析:车牌定位之偏斜扭转

CSS代码片段

CSS代码片段

EasyPR源码剖析:字符分割