Hive基本操作与案例

Posted 咱们屯里的人

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive基本操作与案例相关的知识,希望对你有一定的参考价值。

1. 创建数据库,切换数据库

create database testdb2;
use testdb2; 

 

2. 创建管理表

create table emp(
empno int,
empname string,
job string,
mgr int,
hiredate string,
salary double,
comm double,
deptno int)
row format delimited
fields terminated by \t;
 
加载数据
load data local inpath /opt/test/emp.txt overwrite into table emp; 

 
3. 创建外部表
创建外部表时直接指定表位置
上传数据文件到指定路径  

hdfs dfs -mkdir /user/hive/warehouse/testdb2.db/emp_ext
hdfs dfs -put emp.txt /user/hive/warehouse/testdb2.db/emp_ext/ 

 
在hive中创建数据表指定location

create external table emp_ext(
empno int,
empname string,
job string,
mgr int,
hiredate string,
salary double,
comm double,
deptno int)
row format delimited
fields terminated by \t
location /user/hive/warehouse/testdb2.db/emp_ext/; 

 
4. 创建分区表

create table emp_part(
empno int,
empname string,
job string,
mgr int,
hiredate string,
salary double,
comm double,
deptno int)
partitioned by (year string, month string)
row format delimited
fields terminated by \t; 

注:分区字段不能与表中其他字段重复,否则报错
FAILED: SemanticException [Error 10035]: Column repeated in partitioning columns
 
加载数据
从本地拷贝emp.txt到分区表目录中

load data local inpath /opt/test/emp.txt into table emp_part partition (year=2016, month=3);
load data local inpath /opt/test/emp.txt into table emp_part partition (year=2016, month=4); 

 

用hdfs中指定位置的数据,增加分区表中数据,此操作不会移动数据文件到分区表目录中

alter table emp_part add partition (year=2016, month=5) location /data; 


把hdfs中指定位置的数据移动到分区表目录中,增加数据

load data inpath /emp.txt into table emp_part partition (year=2016, month=6); 

 
5.其他创建表的方式
(1) create-as

create table emp3  
as
select * from emp; 


(2) create-like

create table emp4 like emp;
load data local inpath /opt/test/emp.txt overwrite into table emp4; 


(3)插入数据

insert overwrite table emp4 select * from emp; 

 
6.指定表存储格式与压缩格式
(1) 指定orc格式

create table emp_orc(
empno int,
empname string,
job string,
mgr int,
hiredate string,
salary double,
comm double,
deptno int)
stored as orc; 

指定为非文本格式时无需再指定row format delimited fields terminated by ‘\t‘

插入数据
insert into table emp_orc select * from emp; 

 
可以利用已有的ORC存储格式的表创建新的ORC表

create table emp_orc2 like emp_orc;
插入数据
insert overwrite table emp_orc2 select * from emp; 

 
(2) 指定orc+snappy格式
a)先创建表,再插入数据

create table emp_orc_snappy(
empno int,
empname string,
job string,
mgr int,
hiredate string,
salary double,
comm double,
deptno int)
stored as orc tblproperties("orc.compression"="snappy");
插入数据
insert overwrite table emp_orc_snappy select * from emp; 


b)利用已有的orc表格式创建orc+snappy格式表

create table emp_orc_snappy2 like emp_orc tblproperties ("orc.compression"="snappy");
insert overwrite table emp_orc_snappy2 select * from emp; 


c)利用非压缩表直接创建orc+snappy表并导入数据

create table emp_orc_snappy3
stored as orc tblproperties("orc.compression"="snappy")
as select * from emp; 


7.hive执行参数-e,-f,--hiveconf
(1)命令行直接执行hql语句

hive -e "select * from db_hive01.emp" 


(2)执行hql文件中的语句

hive -f emp.hql 


(3)打开调试模式

hive --hiveconf hive.root.logger=DEBUG,console 


8.数据导出
(1)导出数据到本地
a)insert

insert overwrite local directory /opt/test/local  
row format delimited fields terminated by \t
select * from emp; 

如果不指定row format delimited fields terminated by ‘\t‘,字段间默认没有分割符    
 
b)

hive -e select * from testdb2.emp  >> ./emp_export.txt 

 
(2)导出到hdfs
a)

insert overwrite directory /export_data  
select * from emp; 

hive 0.13.1版本还不支持导出数据到hdfs时指定分隔符row format delimited fields terminated by ‘\t‘
 
b)

export table emp to /export_data; 

导出后会在会生成/export_data/data目录, emp.txt存放在此目录中,即/export_data/data/emp.txt
 
9. 排序
(1)order by 全局排序

insert overwrite local directory /opt/test/local  
row format delimited fields terminated by \t
select * from emp order by empno; 


(2)sort by 与 distributed by
类似MR中partition,进行分区,结合sort by使用
每个reduce内部进行排序,全局不是排序, distribute by 一定是放在sort by 前面,
且必须要指定mapreduce.job.reduces数量,否则导出结果还是在一个文件中  

set mapreduce.job.reduces=3;
insert overwrite local directory /opt/test/local  
row format delimited fields terminated by \t
select * from emp distribute by deptno sort by empno; 


(3)cluster by
当distributed by和sort by 字段一样的时候,直接使用cluster by
 
10.常用函数

select upper(empname) from emp;
select unix_timestamp(trackTime) from bflog limit 3 ;
select year(hiredate) from emp ;
select month(hiredate) from emp ;
select hour(hiredate) from emp ;
select substr(hiredate,1,4) from .emp ;
select split(hiredate,-)[1] from emp ;
select reverse(hiredate) from emp ;
select concat(empno,-,empname) from emp ;

case when 条件1  then  ...
     when 条件2  then  ...
     else  end  

可以使用desc function substr 查看函数说明, substr第二个参数为index 从1技术,第三个参数为length
 
11. 自定义UDF

add jar /opt/test/mylower.jar ;
CREATE TEMPORARY FUNCTION mylower AS org.gh.hadoop.hive.MyLower; 

 
12. 使用正则表达式加载数据字段

create table beifenglog(
remote_addr string,
remote_user string,
time_local string,
request string,
status string,
body_bytes_sent string,
request_body string,
http_referer string,
http_user_agent string,
http_x_forwarded_for string,
host string)
row format serde org.apache.hadoop.hive.contrib.serde2.RegexSerDe
with serdeproperties(
"input.regex" = "(\\\"[\\d\\.]+\\\") (\\\"[^ ]+\\\") (\\\".*?\\\") (\\\".*?\\\") (\\\"\\d+\\\") (\\\"\\d+\\\") ([^ ]+) (\\\"[^ ]+\\\") (\\\".*?\\\") (\\\"[^ ]+\\\") (\\\"[^ ]+\\\")"
)
stored as textfile;
 
加载原表数据
load data local inpath /opt/test/beifenglog.data overwrite into table beifenglog; 

可以使用工具调试正则:http://tool.chinaz.com/regex
 
 
13.注意点
(1)在创建表(无论管理表还是外部表)时,如果没有指定location,可以使用load data加载数据
a) 指定本地目录中的数据,会上传数据文件到hdfs中
b) 指定hdfs中数据文件,如果指定的路径与表所在的目录不一致,则移动数据文件到表目录中
 

create external table emp_ext2 like emp;
load data inpath /emp.txt into table emp_ext2;
会把/emp.txt移动到/user/hive/warehouse/testdb2.db/emp_ext2/目录中 
create table emp2 like emp;
load data inpath /emp.txt into table emp2;
会把/emp.txt移动到/user/hive/warehouse/testdb2.db/emp2/目录中 

 
(2)create-like时不能指定stored as为其他格式,否则报错
以下操作会报错 FAILED: ParseException line 1:31 missing EOF at ‘stored‘ near ‘emp‘

create table emp_orc2 like emp stored as orc; 



以上是关于Hive基本操作与案例的主要内容,如果未能解决你的问题,请参考以下文章

2021年大数据Flink(三十八):​​​​​​​Table与SQL ​​​​​​案例五 FlinkSQL整合Hive

Hive函数入门--案例:UDF实现手机号加密--代码实现与效果演示

案例: jdbc 操作hive数据库

京东金融数据分析:MySQL+HIVE的结合应用案例详解附全代码

D京东金融数据分析:MySQL+HIVE的结合应用案例详解附全代码

Hive学习之五 《Hive进阶—UDF操作案例》 详解