《机器学习》周志华 习题答案6.2
Posted 机器人小z
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《机器学习》周志华 习题答案6.2相关的知识,希望对你有一定的参考价值。
原题是分别采用线性核和高斯核对西瓜数据集进行SVM的训练,周老师推荐的是LIMSVM,这里我使用的仍然是sklearn。
#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets file1 = open(\'c:\\quant\\watermelon.csv\',\'r\') data = [line.strip(\'\\n\').split(\',\') for line in file1] data = np.array(data) X = [[float(raw[-2]), float(raw[-1])] for raw in data[1:,1:-1]] #X = [[float(raw[-3]), float(raw[-2])] for raw in data[1:]] y = [1 if raw[-1]==\'1\' else 0 for raw in data[1:]] X = np.array(X) y = np.array(y) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1000 # SVM regularization parameter svc = svm.SVC(kernel=\'linear\', C=C).fit(X, y) rbf_svc = svm.SVC(kernel=\'rbf\', gamma=0.7, C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = [\'SVC with linear kernel\', \'SVC with RBF kernel\'] for i, clf in enumerate((svc, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel(\'Sugar content\') plt.ylabel(\'Density\') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
结果如下:
线性核的支持向量也是线性的,高斯核的支持向量是曲线。
以上是关于《机器学习》周志华 习题答案6.2的主要内容,如果未能解决你的问题,请参考以下文章