论文笔记Spatial Transformer Networks
Posted 有来有去-CV
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文笔记Spatial Transformer Networks相关的知识,希望对你有一定的参考价值。
参考文献:**Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. 2015: 2017-2025.
摘要
卷积神经网络(CNN)已经被证明能够训练一个能力强大的分类模型,但与传统的模式识别方法类似,它也会受到数据在空间上多样性的影响。这篇Paper提出了一种叫做空间变换网络(Spatial Transform Networks, STN),该网络不需要关键点的标定,能够根据分类或者其它任务自适应地将数据进行空间变换和对齐(包括平移、缩放、旋转以及其它几何变换等)。在输入数据在空间差异较大的情况下,这个网络可以加在现有的卷积网络中,提高分类的准确性。
——————
由于我之前的工作部分涉及到人脸对齐,所以看到这篇Paper异常激动。总觉得能用它做点什么。
算法介绍
1. 算法总流程
STN 主要可以分为三个部分:1)localisation network. 2) grid generator. 3) sampler. (中文我翻译不准确,大家意会下)。localisation network用来计算空间变换的参数
1.1 Localisation Network
它的作用就是通过一个子网络(全连接或者卷积网,再加一个回归层),生成空间变换的参数
1.2 Parameterised Sampling Grid
假设
当然,
1.3 Differentiable Image Sampling
在计算得到
在求得
以上是关于论文笔记Spatial Transformer Networks的主要内容,如果未能解决你的问题,请参考以下文章