LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)
Posted silentteller
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)相关的知识,希望对你有一定的参考价值。
题目:
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences‘ length is 1, so output 5.
分析:
求出最长递增子序列的个数,我们使用lens[i]表示以nums[i]为结尾的递增子序列中元素的个数也就是长度,以time[i]表示以nums[i]为结尾的递增子序列出现的次数,遍历nums数组,维护这两个数组。
遍历nums[i]这个元素,都要和i前面的元素进行比较(用j进行遍历),如果nums[i]大于nums[j],意味着nums[i]可以拼接到nums[j]后面,产生一个更长的子序列,如果lens[i] < lens[j] +1,更新lens数组lens[i] = lens[j]+1,同时times[i] = times[j]。
如果lens[i]恰好等于lens[j] +1,意味着此时已经有和当前长度相同的子序列了,我们要更新times[i] += times[j],因为以nums[i]为结尾的子序列(长度为lens[i])已经出现过了,我们要加上出现的次数。
最后统计最大长度出现的次数,返回答案即可。
程序:
C++
class Solution { public: int findNumberOfLIS(vector<int>& nums) { auto lens = vector<int>(nums.size(), 1); auto times = vector<int>(nums.size(), 1); for(int i = 1; i < nums.size(); ++i){ for(int j = 0; j < i; ++j){ if(nums[j] >= nums[i]) continue; if(lens[j] + 1 > lens[i]){ lens[i] = lens[j] + 1; times[i] = times[j]; } else if(lens[j] + 1 == lens[i]) times[i] += times[j]; } } int maxLen = 0; int res = 0; for(int i = 0; i < lens.size(); ++i){ if(maxLen < lens[i]){ maxLen = lens[i]; res = times[i]; } else if(lens[i] == maxLen) res += times[i]; } return res; } };
Java
class Solution { public int findNumberOfLIS(int[] nums) { if(nums.length == 0) return 0; int[] lens = new int[nums.length]; int[] times = new int[nums.length]; int maxLen = 1; for(int i = 0; i < nums.length; ++i){ lens[i] = 1; times[i] = 1; for(int j = 0; j < i; ++j){ if(nums[i] <= nums[j]) continue; if(lens[j] + 1 > lens[i]){ lens[i] = lens[j] + 1; times[i] = times[j]; } else if(lens[j] + 1 == lens[i]){ times[i] += times[j]; } } maxLen = Math.max(maxLen, lens[i]); } int res = 0; for(int i = 0; i < lens.length; ++i){ if(lens[i] == maxLen) res += times[i]; } return res; } }
以上是关于LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)的主要内容,如果未能解决你的问题,请参考以下文章
673. Number of Longest Increasing Subsequence
673. Number of Longest Increasing Subsequence
673. Number of Longest Increasing Subsequence
673. Number of Longest Increasing Subsequence
673. Number of Longest Increasing Subsequence
[LeetCode] Prime Number of Set Bits in Binary Representation