图论(2-sat):Priest John's Busiest Day
Posted 既然选择了远方,便只顾风雨兼程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图论(2-sat):Priest John's Busiest Day相关的知识,希望对你有一定的参考价值。
Description
John is the only priest in his town. September 1st is the John‘s busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.
Note that John can not be present at two weddings simultaneously.
Input
The first line contains a integer N ( 1 ≤ N ≤ 1000).
The next N lines contain the Si, Ti and Di. Si and Ti are in the format of hh:mm.
Output
The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.
Sample Input
2 08:00 09:00 30 08:15 09:00 20
Sample Output
YES 08:00 08:30 08:40 09:00
闹半天结果是数组开小了。
这里是2-sat O(n+m)输出任意解的模板。
1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 const int maxn=4010; 6 const int maxm=4000010; 7 int n; 8 struct E{ 9 int cnt,fir[maxn],to[maxm],nxt[maxm]; 10 void addedge(int a,int b){ 11 nxt[++cnt]=fir[a]; 12 fir[a]=cnt; 13 to[cnt]=b; 14 } 15 }e,g; 16 17 struct Time{ 18 int h,s; 19 Time(int h_=0,int s_=0){ 20 h=h_;s=s_; 21 } 22 friend bool operator <=(Time x,Time y){ 23 return x.h!=y.h?x.h<y.h:x.s<=y.s; 24 } 25 friend Time operator +(Time x,Time y){ 26 Time ret(0,0); 27 ret.s=(x.s+y.s)%60; 28 ret.h=x.h+y.h+(x.s+y.s)/60; 29 return ret; 30 } 31 friend Time operator -(Time x,Time y){ 32 Time ret(0,0); 33 ret.s=x.s-y.s+(x.s<y.s?1:0)*60; 34 ret.h=x.h-y.h-(x.s<y.s?1:0); 35 return ret; 36 } 37 void Print(){ 38 printf("%02d:%02d",h,s); 39 } 40 }p1[maxn],p2[maxn],p3[maxn],p4[maxn]; 41 42 bool Judge(Time pl,Time pr,Time ql,Time qr){ 43 if(pr<=ql||qr<=pl)return false; 44 return true; 45 } 46 47 int tot,ID[maxn],low[maxn],scnt; 48 int st[maxn],top,scc[maxn]; 49 50 void Tarjan(int x){ 51 ID[x]=low[x]=++tot;st[++top]=x; 52 for(int i=e.fir[x];i;i=e.nxt[i]) 53 if(!ID[e.to[i]]){ 54 Tarjan(e.to[i]); 55 low[x]=min(low[x],low[e.to[i]]); 56 } 57 else if(!scc[e.to[i]]) 58 low[x]=min(low[x],ID[e.to[i]]); 59 if(low[x]==ID[x]){ 60 ++scnt; 61 while(true){ 62 int y=st[top--]; 63 scc[y]=scnt; 64 if(x==y)break; 65 } 66 } 67 } 68 69 bool Solve(){ 70 for(int i=0;i<n*2;i++) 71 if(!ID[i])Tarjan(i); 72 73 for(int i=0;i<n;i++) 74 if(scc[i*2]==scc[i*2+1]) 75 return false; 76 return true; 77 } 78 79 int rev[maxn]; 80 int match[maxn],in[maxn]; 81 int q[maxn],front,back; 82 void Topo(){ 83 for(int i=0;i<n;i++){ 84 rev[scc[i*2]]=scc[i*2+1]; 85 rev[scc[i*2+1]]=scc[i*2]; 86 } 87 for(int x=0;x<n*2;x++) 88 for(int i=e.fir[x];i;i=e.nxt[i]) 89 if(scc[x]!=scc[e.to[i]]) 90 g.addedge(scc[e.to[i]],scc[x]),in[scc[x]]+=1; 91 92 for(int i=1;i<=scnt;i++) 93 if(!in[i])q[back++]=i; 94 95 while(front<back){ 96 int x=q[front++]; 97 if(match[x]==0){ 98 match[x]=1; 99 match[rev[x]]=2; 100 } 101 for(int i=g.fir[x];i;i=g.nxt[i]) 102 if(--in[g.to[i]]==0)q[back++]=g.to[i]; 103 } 104 } 105 106 void Print(){ 107 for(int i=0;i<n;i++){ 108 if(match[scc[i*2]]==1){ 109 p1[i].Print();printf(" "); 110 p2[i].Print();printf("\n"); 111 } 112 else{ 113 p3[i].Print();printf(" "); 114 p4[i].Print();printf("\n"); 115 } 116 } 117 } 118 119 int main(){ 120 scanf("%d",&n); 121 for(int i=0,d;i<n;i++){ 122 scanf("%d:%d",&p1[i].h,&p1[i].s); 123 scanf("%d:%d",&p4[i].h,&p4[i].s); 124 scanf("%d",&d); 125 p2[i]=p1[i]+Time(d/60,d%60); 126 p3[i]=p4[i]-Time(d/60,d%60); 127 } 128 129 for(int i=0;i<n;i++) 130 for(int j=i+1;j<n;j++){ 131 if(Judge(p1[i],p2[i],p1[j],p2[j])){ 132 e.addedge(i*2,j*2+1); 133 e.addedge(j*2,i*2+1); 134 } 135 if(Judge(p1[i],p2[i],p3[j],p4[j])){ 136 e.addedge(i*2,j*2); 137 e.addedge(j*2+1,i*2+1); 138 } 139 if(Judge(p3[i],p4[i],p1[j],p2[j])){ 140 e.addedge(i*2+1,j*2+1); 141 e.addedge(j*2,i*2); 142 } 143 if(Judge(p3[i],p4[i],p3[j],p4[j])){ 144 e.addedge(i*2+1,j*2); 145 e.addedge(j*2+1,i*2); 146 } 147 } 148 149 if(!Solve()) 150 printf("NO\n"); 151 else{ 152 printf("YES\n"); 153 Topo();Print(); 154 } 155 return 0; 156 }
以上是关于图论(2-sat):Priest John's Busiest Day的主要内容,如果未能解决你的问题,请参考以下文章
POJ 3683.Priest John's Busiest Day 2-SAT
POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)
POJ 3683 Priest John's Busiest Day(2-sat)
POJ 3683 Priest John's Busiest Day(2-SAT)