mongodb 语句和SQL语句对应(SQL to Aggregation Mapping Chart)

Posted 步履不停

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mongodb 语句和SQL语句对应(SQL to Aggregation Mapping Chart)相关的知识,希望对你有一定的参考价值。

SQL to Aggregation Mapping Chart

https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/

The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:

SQL Terms, Functions, and ConceptsMongoDB Aggregation Operators
WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum
join

$lookup

New in version 3.2.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.

  • The MongoDB examples assume one collection orders that contain documents of the following prototype:

    {
      cust_id: "abc123",
      ord_date: ISODate("2012-11-02T17:04:11.102Z"),
      status: ‘A‘,
      price: 50,
      items: [ { sku: "xxx", qty: 25, price: 1 },
               { sku: "yyy", qty: 25, price: 1 } ]
    }
    
SQL ExampleMongoDB ExampleDescription
SELECT COUNT(*) AS count
FROM orders
db.orders.aggregate( [
   {
     $group: {
        _id: null,
        count: { $sum: 1 }
     }
   }
] )
Count all records from orders
SELECT SUM(price) AS total
FROM orders
db.orders.aggregate( [
   {
     $group: {
        _id: null,
        total: { $sum: "$price" }
     }
   }
] )
Sum the price field from orders
SELECT cust_id,
       SUM(price) AS total
FROM orders
GROUP BY cust_id
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   }
] )
For each unique cust_id, sum theprice field.
SELECT cust_id,
       SUM(price) AS total
FROM orders
GROUP BY cust_id
ORDER BY total
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   },
   { $sort: { total: 1 } }
] )
For each unique cust_id, sum theprice field, results sorted by sum.
SELECT cust_id,
       ord_date,
       SUM(price) AS total
FROM orders
GROUP BY cust_id,
         ord_date
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        },
        total: { $sum: "$price" }
     }
   }
] )
For each unique cust_idord_dategrouping, sum the price field. Excludes the time portion of the date.
SELECT cust_id,
       count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        count: { $sum: 1 }
     }
   },
   { $match: { count: { $gt: 1 } } }
] )
For cust_id with multiple records, return the cust_id and the corresponding record count.
SELECT cust_id,
       ord_date,
       SUM(price) AS total
FROM orders
GROUP BY cust_id,
         ord_date
HAVING total > 250
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        },
        total: { $sum: "$price" }
     }
   },
   { $match: { total: { $gt: 250 } } }
] )
For each unique cust_idord_dategrouping, sum the price field and return only where the sum is greater than 250. Excludes the time portion of the date.
SELECT cust_id,
       SUM(price) as total
FROM orders
WHERE status = ‘A‘
GROUP BY cust_id
db.orders.aggregate( [
   { $match: { status: ‘A‘ } },
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   }
] )
For each unique cust_id with status A, sum the price field.
SELECT cust_id,
       SUM(price) as total
FROM orders
WHERE status = ‘A‘
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
   { $match: { status: ‘A‘ } },
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   },
   { $match: { total: { $gt: 250 } } }
] )
For each unique cust_id with status A, sum the price field and return only where the sum is greater than 250.
SELECT cust_id,
       SUM(li.qty) as qty
FROM orders o,
     order_lineitem li
WHERE li.order_id = o.id
GROUP BY cust_id
db.orders.aggregate( [
   { $unwind: "$items" },
   {
     $group: {
        _id: "$cust_id",
        qty: { $sum: "$items.qty" }
     }
   }
] )
For each unique cust_id, sum the corresponding line item qty fields associated with the orders.
SELECT COUNT(*)
FROM (SELECT cust_id,
             ord_date
      FROM orders
      GROUP BY cust_id,
               ord_date)
      as DerivedTable
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        }
     }
   },
   {
     $group: {
        _id: null,
        count: { $sum: 1 }
     }
   }
] )
Count the number of distinctcust_idord_date groupings. Excludes the time portion of the d

以上是关于mongodb 语句和SQL语句对应(SQL to Aggregation Mapping Chart)的主要内容,如果未能解决你的问题,请参考以下文章

SQL与MongoDB数据库的对应关系图表

LINQ to SQL语句(10)之Insert

mongodb 跟踪SQL语句及慢查询收集

sql语句实例练习

python操作excel转换为sql语句

Django和SQL语句的对应参考