codeforces 688D - Remainders Game 数学相关

Posted shuguangzw

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了codeforces 688D - Remainders Game 数学相关相关的知识,希望对你有一定的参考价值。

题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知)

 

——数学相关知识:

首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x%20=y,那么ans=x%k=y%5;

介绍(互质版)中国剩余定理,假设已知m1,m2,mn,两两互质,且又知道x%m1,x%m2..x%mn分别等于多少

设M=m1*m2*m3..mn,那么x在模M的剩余系下只有唯一解(也就是知道了上面的模线性方程组,就可以求出x%M等于多少)

 

——此题解法

针对这个题呢,我们要确定x%k,只要保证知道上述的互质的模线性方程组就好

怎么样得到模线性方程组呢,直接把k唯一分解就好

即:k=p1^k1*p2^k2...*pr^kn,如果任意i,都有pi^ki的倍数出现在集合中(这一点如果不懂可以看上面,如果知道一个数倍数的取模,那么它肯定也知道),那么k就能被猜出来

 

分析:只要保证k能整除ci的最小公倍数即可,由于太大,所以通过暴力分解因子的办法来判断

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1e5+5;
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
bool cov[1005];
int n,k,cnt,fac[1005]; 
int main(){
    scanf("%d%d",&n,&k);
    for(int i=2;i<=k;++i){
      if(k%i)continue;
       int cur=1;
       while(k%i==0)cur*=i,k/=i;
       fac[++cnt]=cur;
    }
    for(int i=0;i<n;++i){
      int x;scanf("%d",&x);
      for(int j=1;j<=cnt;++j)
        if(x%fac[j]==0)cov[j]=true;
    }
    bool flag=1;
    for(int i=1;i<=cnt;++i)
      if(!cov[i])flag=0;
    if(flag)printf("Yes\\n");
    else printf("No\\n");
    return 0;
}
View Code

 

以上是关于codeforces 688D - Remainders Game 数学相关的主要内容,如果未能解决你的问题,请参考以下文章

codeforces上怎么看测试数据

如何看codeforces做了多少题

codeforces上怎么看测试数据

codeforces比赛后怎么看题解和答案

codeforces是啥?

codeforce题解在哪