POJ3256:Cow Picnic
Posted vCoders
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ3256:Cow Picnic相关的知识,希望对你有一定的参考价值。
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 5432 | Accepted: 2243 |
Description
The cows are having a picnic! Each of Farmer John‘s K (1 ≤ K ≤ 100) cows is grazing in one of N (1 ≤ N ≤ 1,000) pastures, conveniently numbered 1...N. The pastures are connected by M (1 ≤ M ≤ 10,000) one-way paths (no path connects a pasture to itself).
The cows want to gather in the same pasture for their picnic, but (because of the one-way paths) some cows may only be able to get to some pastures. Help the cows out by figuring out how many pastures are reachable by all cows, and hence are possible picnic locations.
Input
Lines 2..K+1: Line i+1 contains a single integer (1..N) which is the number of the pasture in which cow i is grazing.
Lines K+2..M+K+1: Each line contains two space-separated integers, respectively A and B (both 1..N and A != B), representing a one-way path from pasture A to pasture B.
Output
Sample Input
2 4 4 2 3 1 2 1 4 2 3 3 4
Sample Output
2
思路:直接dfs遍历.
#include <cstdio> #include <cstring> using namespace std; const int MAXN=1005; bool mp[MAXN][MAXN]; int belong[MAXN];//记录每个cow所属的pasture int gather[MAXN];//记录每个pasture所能聚集的cow的个数 int vis[MAXN]; int k,n,m; void dfs(int u) { vis[u]=1; gather[u]++; for(int i=1;i<=n;i++) { if(mp[u][i]&&!vis[i])//存在环 { dfs(i); } } } int main() { while(scanf("%d%d%d",&k,&n,&m)!=EOF) { memset(mp,false,sizeof(mp)); memset(belong,0,sizeof(belong)); memset(gather,0,sizeof(gather)); memset(vis,0,sizeof(vis)); for(int i=1;i<=k;i++) { int x; scanf("%d",&x); belong[i]=x; } for(int i=0;i<m;i++) { int u,v; scanf("%d%d",&u,&v); mp[u][v]=true; } for(int i=1;i<=k;i++) { memset(vis,0,sizeof(vis)); dfs(belong[i]); } int res=0; for(int i=1;i<=n;i++) if(gather[i]==k) //pasture聚集的row数目为k则res+1 res++; printf("%d\n",res); } return 0; }
以上是关于POJ3256:Cow Picnic的主要内容,如果未能解决你的问题,请参考以下文章
poj1259The Picnic & hdu6219 Empty Convex Polygon(17沈阳区域赛C)最大空凸包
POJ 1639 Picnic Planning:最小度限制生成树
poj 1639 Picnic Planning 度限制mst
POJ 1639 Picnic Planning (最小k度限制生成树)
poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)