浅谈小波分析
Posted Young_Gy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了浅谈小波分析相关的知识,希望对你有一定的参考价值。
本文首先介绍了从傅里叶变换到小波变换的发展史,然后着重强调了小波变换的两种作用——时频分析和多分辨率分析,最后讲了一下吉布斯效应等相关知识。
小波的发展历史与驱动
傅里叶变换
FT(傅里叶变换),通过将信号分解成正余弦函数(把三角函数当做函数空间的基),将时域信号转化为频域信号。缺点是只适用于平稳性信号,在频域图上不能获得对应频率的时间信息。
由上图可以看到,对于频域成分相同的信号,即使信号在时域上的分布不一样,FFT变换后的频域图却几乎完全一样。所以说,FFT只可以获得一段信号总体上包含哪些成分,但是对各成分出现的时间并无所知。因此时域相差很大的信号FFT之后的频域图可能完全相同。
短时傅里叶变换
STFT(短时傅里叶变换)添加时域信息的方法是设置窗格,认为窗格内的信号是平稳信号,对窗格内的信号分段进行FT分析。优点是可以获得频域信息的同时可以获得时域信息。缺点是窗格大小很难设置。
STFT的方法及效果如下图:
STFT的窗格问题如下:
由上面的图可以看到,窄窗口时间分辨率高、频率分辨率低;宽窗口时间分辨率低,频率分辨率高。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。可是STFT的窗口是固定的,因此需要寻求别的方法。
小波变换
WT(小波变换),将傅里叶变换的基给换了—— 将无限长的三角函数基换成了有限长的会衰减的小波基,这样不仅可以获取频率,还可以定位到时间。
傅里叶变换
傅里叶变换,通过相互正交的三角函数信号和原信号在无穷上进行积分,积分越大表明信号越相似,包含该频率的三角信号也就越多。
最后,每一个f值对应了一个积分值,获得了频率图。
小波变换
小波变换的原理类似傅里叶变换,只是把三角函数基换成了小波基。
与傅里叶变换不同,小波变换有两个变量:scale和translation。scale控制小波函数的收缩,其导数即为频率,translation控制小标函数的平移,平移量对应时间。
通过信号的伸缩平移,可以得到某种重合情况,这样积分也会得到一个极大值,不同的是,得到频率成分的同时,还可以知道该频率的时间位置。
最后得到的也是三维的图像:
三种变换的对比
傅里叶变换,选择正弦函数作为基函数,然后考察的到的展开式的性质。
对于小波分析,首先提出想要的性质,然后推导出基函数。
小波变换
离散小波变换
连续小波变换
小波的多分辨率阐述
小波的一个思想是在时间和频率两个方面提供有效的局部化,另一个中心思想是多分辨率,即信号的分解是按照不同分辨率的细节一层一层进行的。
信号空间
尺度函数
对于二维函数族(构成空间的基底):
对于所有
如果
也就是说,
多分辨率分析
低分辨率上的信号,不仅可以通过该低分辨率上的信号基底组合,还可以通过高分辨率上信号的基底组合起来。
尺度函数
以上是关于浅谈小波分析的主要内容,如果未能解决你的问题,请参考以下文章