R语言聚类分析

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言聚类分析相关的知识,希望对你有一定的参考价值。

聚类分析有很多种, 效果好不好大概要根据数据特征来确定。最常见的是kmeans法聚类

> setwd("D:\\R_test")
> data_in <- read.delim("tmp_result.txt", header=T)
> fit <- kmeans(data_in, 3)
> library(cluster)
> clusplot(data_in, fit$cluster, color=T, shade=T, labels = 2, lines =0)

也可以用mclust

> install.packages("mclust")
试开URL’http://cloud.r-project.org/bin/windows/contrib/2.14/mclust_4.0.zip‘
Content type ‘application/zip‘ length 2371233 bytes (2.3 Mb)
打开了URL
downloaded 2.3 Mb

程序包‘mclust’打开成功,MD5和检查也通过

下载的程序包在
        C:\Users\Administrator\AppData\Local\Temp\RtmpiIyw2o\downloaded_packages里
> fit <- Mclust(data_in)        
> summary(fit)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm 
----------------------------------------------------

Mclust XXX (elliposidal multivariate normal) model with 1 component:

 log.likelihood   n    df     BIC
        1616504 263 33410 3046843

Clustering table:
  1 
263 

> fit$  // 按下Tab键,有以下选项
fit$call           fit$modelName      fit$n              fit$d              fit$G              
fit$BIC            fit$bic            fit$loglik         fit$df             fit$parameters     
fit$classification fit$uncertainty

> plot(fit, what="classification")

// http://www.statmethods.net/advstats/cluster.html


以上是关于R语言聚类分析的主要内容,如果未能解决你的问题,请参考以下文章

R语言--聚类分析

R语言聚类分析之基于划分的聚类KMeans实战:基于葡萄酒数据

R语言入门--第十四节(聚类分析)

视频复杂网络分析CNA简介与R语言对婚礼数据聚类社区检测和可视化|数据分享|附代码数据

R语言KMeans聚类分析确定最优聚类簇数实战:NbClust包(确定最优聚类簇数)

R语言聚类分析