Python中为什么推荐使用isinstance来进行类型判断?而不是type
Posted 网名还没想好
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python中为什么推荐使用isinstance来进行类型判断?而不是type相关的知识,希望对你有一定的参考价值。
转自:http://www.xinxingzhao.com/blog/2016/05/23/python-type-vs-isinstance.html
Python在定义变量的时候不用指明具体的的类型,解释器会在运行的时候会自动检查 变量的类型,并根据需要进行隐式的类型转化。因为Python是动态语言,所以一般情 况下是不推荐进行类型转化的。比如"+"操作时,如果加号两边是数据就进行加法操 作,如果两边是字符串就进行字符串连接操作,如果两边是列表就进行合并操作,甚 至可以进行复数的运算。解释器会在运行时根据两边的变量的类型调用不同的内部方法。 当加号两边的变量类型不一样的时候,又不能进行类型转化,就会抛出TypeError的异常。
但是在实际的开发中,为了提高代码的健壮性,我们还是需要进行类型检查的。而进行 类型检查首先想到的就是用type(),比如使用type判断一个int类型。
import types
if type(1) is types.Integer:
print(‘1是int类型‘)
else:
print(‘1不是int类型‘)
上面的程序会输出:1是int类型
我们在types中可以找到一些常用的类型,在2.7.6中显示的结果:
types.BooleanType # bool类型
types.BufferType # buffer类型
types.BuiltinFunctionType # 内建函数,比如len()
types.BuiltinMethodType # 内建方法,指的是类中的方法
types.ClassType # 类类型
types.CodeType # 代码块类型
types.ComplexType # 复数类型
types.DictProxyType # 字典代理类型
types.DictType # 字典类型
types.DictionaryType # 字典备用的类型
types.EllipsisType
types.FileType # 文件类型
types.FloatType # 浮点类型
types.FrameType
types.FunctionType # 函数类型
types.GeneratorType
types.GetSetDescriptorType
types.InstanceType # 实例类型
types.IntType # int类型
types.LambdaType # lambda类型
types.ListType # 列表类型
types.LongType # long类型
types.MemberDescriptorType
types.MethodType # 方法类型
types.ModuleType # module类型
types.NoneType # None类型
types.NotImplementedType
types.ObjectType # object类型
types.SliceTypeh
types.StringType # 字符串类型
types.StringTypes
types.TracebackType
types.TupleType # 元组类型
types.TypeType # 类型本身
types.UnboundMethodType
types.UnicodeType
types.XRangeType
在Python 3中,类型已经明显减少了很多
types.BuiltinFunctionType
types.BuiltinMethodType
types.CodeType
types.DynamicClassAttribute
types.FrameType
types.FunctionType
types.GeneratorType
types.GetSetDescriptorType
types.LambdaType
types.MappingProxyType
types.MemberDescriptorType
types.MethodType
types.ModuleType
types.SimpleNamespace
types.TracebackType
types.new_class
types.prepare_class
但是我们并不推荐使用type来进行类型检查,之所以把这些类型列出来,也是为了扩展知识 面。那为什么不推荐使用type进行类型检查呢?我们来看一下下面的例子。
import types
class UserInt(int):
def __init__(self, val=0):
self.val = int(val)
i = 1
n = UserInt(2)
print(type(i) is type(n))
上面的代码输出:False
这就说明i和n的类型是不一样的,而实际上UserInt是继承自int的,所以这个判断是存在问题的, 当我们对Python内建类型进行扩展的时候,type返回的结果就不够准确了。我们再看一个例子。
class A():
pass
class B():
pass
a = A()
b = B()
print(type(a) is type(b))
代码的输出结果: True
type比较的结果a和b的类型是一样的,结果明显是不准确的。这种古典类的实例,type返回的结果都 是一样的,而这样的结果不是我们想要的。对于内建的基本类型来说,使用tpye来检查是没有问题的, 可是当应用到其他场合的时候,type就显得不可靠了。这个时候我们就需要使用isinstance来进行类型 检查。
isinstance(object, classinfo)
object表示实例,classinfo可以是直接或间接类名、基本类型或者有它们组成的元组。
>>> isinstance(2, float)
False
>>> isinstance(‘a‘, (str, unicode))
True
>>> isinstance((2, 3), (str, list, tuple))
True
以上是关于Python中为什么推荐使用isinstance来进行类型判断?而不是type的主要内容,如果未能解决你的问题,请参考以下文章