二叉搜索树倒序O(nlogn)建树

Posted backkom-buaa

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉搜索树倒序O(nlogn)建树相关的知识,希望对你有一定的参考价值。

由于在某些糟糕情况下,二叉查找树会退化成链,故而朴素建树过程其复杂度可能会退化成\(O(n^2)\)

采用倒序连边建树的方法可以使得二叉查找树建树复杂度稳定在\(O(nlogn)\).

具体思路如下:

  • 把待建树的序列\(a_1,a_2,a_3,a_4..a_n\)\(排序,对于每一个\)\(a_i\)求得其在排序后的序列中的前驱pre和后继suc.

  • 倒序遍历序列\(a_n\),对于\(a_i\),其一定是其前驱与后继之中的某个的儿子,如果前驱在序列\(a_n\)比后继靠后(出现的晚),那么ai是前驱的儿子,反之是后继的儿子。//仔细想想,为什么?

  • 更新对应的前驱或后继,并且删除掉\(a_i\)

对于第二点,可以理解为建树的过程是把区间不断更新成左右子树的过程。那么对于某一个插入,假设点插入了

区间[pre+1,suc-1],那么[pre+1,point-1]为左子树,[point+1,suc-1]为右子树。也就是说区间是谁的子树,要看区间端点谁最后出现。

所以一个二叉查找树一个很重要的性质是:对于每一次插入的结点,其要么是最小的比它大的结点的儿子,要么是最大的比它小的结点的儿子。

根据这个性质,可以通过树状数组同样完成\(O(nlog^2n)\)建树。

我们已经知道对于每次插入,我们只需要知道所要插入的点要落在哪个区间,即落在哪两个点之间。

所以通过树状数组维护前缀和(目的是求插入的点是当前第几大),假设当前的点是第k大,二分查询树状数组

分别查询出第k-1大对应的位置和第k+1大对应的位置,然后比较这两个位置谁晚出现,即可。

以上是关于二叉搜索树倒序O(nlogn)建树的主要内容,如果未能解决你的问题,请参考以下文章

BST二叉搜索树插入节点建树并找出不平衡节点,networkx,Python

BST二叉搜索树插入节点建树并找出不平衡节点,networkx,Python

天梯赛练习 L3-010 是否完全二叉搜索树 (30分) 数组建树模拟

二叉搜索树的建树与遍历

如何将二叉树就地转换为二叉搜索树,即我们不能使用任何额外的空间

BST插值建树re-balance再平衡构建AVL(Adelson-Velskii & Landis)平衡二叉搜索树,基于networkxbinarytree,implement by Pyt