分治法习题
Posted edviv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分治法习题相关的知识,希望对你有一定的参考价值。
一.分治法设计一个算法,统计输入的非空字符串中给定字符的个数。
1 #include <iostream> 2 #include <stdio.h> 3 #include <string.h> 4 using namespace std; 5 const int maxn = 1000; 6 char str[maxn]; 7 char TargetChar; 8 int CharNum; 9 int CountTargetCharNum(char s[], char TargetChar, int begin, int end) 10 11 int L, R; 12 if(begin == end) return (s[begin] == TargetChar); 13 else 14 15 L = CountTargetCharNum(s, TargetChar, begin, begin + (end - begin)/2); 16 R = CountTargetCharNum(s, TargetChar, begin + (end - begin)/2 + 1, end); 17 return (L + R); 18 19 20 21 int main() 22 23 cout<<"Please enter a string:"; 24 gets(str); 25 if(strlen(str) == 0) 26 27 cout<<"Don‘t allow to enter a NULL string!"<<endl; 28 return 0; 29 30 cout<<"Please enter a char what you need to find:"; 31 cin>>TargetChar; 32 CharNum = CountTargetCharNum(str, TargetChar, 0, maxn - 1); 33 cout<<"Finding the char number:"<<CharNum<<endl; 34 return 0; 35
二.非递归形式设计二分搜索程序。
1 int BinarySearch(int ArrayData[], int x, int n) 2 3 int L = 0, R = n - 1; 4 while(L <= R) 5 6 int mid = (L + R)/2; 7 if(x == ArrayData[mid]) return mid; 8 if(x > ArrayData[mid]) L = mid + 1; 9 else R = mid - 1; 10 11 return -1; //未找到 x 12
三.16个硬币放袋子里,其中有一枚硬币是假币,并且那个伪造的硬币比真币轻,设计一个算法找到那枚假币。
1 #include <bits/stdc++.h> 2 #define ARRAY_SIZE 16 3 #define TRUE 1 4 #define FALSE 0 5 using namespace std; 6 int CallTimes = 0; 7 //生成包含 N 个硬币重量的数组(含一枚伪币),并返回伪币位置 8 int GreateRandomCoinWeightArray(int *p, int N) 9 10 int i, kt; 11 int TrueCoinWeight, FakeCoinWeight; 12 int IsStop; 13 //生成随机数种子 14 srand((unsigned)time(NULL)); 15 //生成随机真币重量值(在 50 ~ 100 之间) 16 TrueCoinWeight = 50 + rand()%(100 - 50); 17 //生成随机伪币位置(在 0 ~ N - 1 之间) 18 kt = rand() % N; 19 //设置真币重量 20 for(i = 0; i < N; i++) 21 if(i != kt) 22 *(p + i) = TrueCoinWeight; 23 //生成一个比真币略轻的伪币重量 24 IsStop = FALSE; 25 while(!IsStop) 26 27 FakeCoinWeight = 50 + rand()%(100 - 50); 28 // 29 if((TrueCoinWeight > FakeCoinWeight) && (TrueCoinWeight - FakeCoinWeight <= 5)) 30 31 IsStop = TRUE; 32 *(p + kt) = FakeCoinWeight; 33 34 35 //返回伪币位置 36 return kt; 37 38 //计算数组中硬币的重量和 39 int CalcCoinTotalWeight(int ArrayData[], int kb, int ke) 40 41 int i, TotalWeight = 0; 42 for(i = kb; i <= ke; i++) TotalWeight += ArrayData[i]; 43 return TotalWeight; 44 45 //采用分治法找到伪币(假定伪币一定存在且只有一枚) 46 //kb:(子)数组左边界( begin ) 47 //ke:(子)数组右边界( end ) 48 int FindFakeCoin(int ArrayData[], int kb, int ke) 49 50 int LWeight, RWeight; 51 CallTimes++; 52 printf("<第 %d 次查找>\\n",CallTimes); 53 if((ke - kb) == 1) //(子)数组中仅包含两个元素 54 55 if(ArrayData[kb] < ArrayData[ke]) return kb; 56 else return ke; 57 58 else //(子)数组中包含有多个元素 59 60 //计算子数组硬币重量 61 LWeight = CalcCoinTotalWeight(ArrayData, kb, kb + (ke - kb)/2); 62 RWeight = CalcCoinTotalWeight(ArrayData,kb + (ke - kb)/2 + 1, ke); 63 if(LWeight < RWeight) //伪币在数组左半部分 64 return FindFakeCoin(ArrayData, kb, kb + (ke - kb)/2); 65 else //伪币在数组右半部分 66 return FindFakeCoin(ArrayData, kb + (ke - kb)/2 + 1, ke); 67 68 69 int main() 70 71 int ArrayData[ARRAY_SIZE]; 72 int i, k, FakeCoinPos; 73 //生成包含 N 个硬币重量的数组(含一枚伪币),并返回伪币位置 74 k = GreateRandomCoinWeightArray(ArrayData, ARRAY_SIZE); 75 //输出随机数组内容 76 printf("<生成的硬币重量数组值为(含一枚伪币)>:\\n"); 77 for(i = 0; i < ARRAY_SIZE; i++) printf("%d\\n",ArrayData[i]); 78 printf("\\n"); 79 printf("<第 %d 枚为伪币>\\n",(k + 1)); 80 printf("\\n"); 81 //采用分治法找到伪币位置 82 FakeCoinPos = FindFakeCoin(ArrayData, 0, ARRAY_SIZE - 1); 83 printf("<找到第 %d 枚伪币>\\n",(FakeCoinPos+1)); 84 printf("\\n"); 85 //等待用户输入任意一键返回 86 system("PAUSE"); 87 return 0; 88
四. 大于 1 的正整数 n,设计一个算法计算 n 有多少种不同的分解式。
1 int TotalModeNum = 0; 2 int CalcIntDecomModeNum(int n) 3 4 if(n == 1) TotalModeNum++; 5 else 6 7 for(int i = 2; i <= n; i++) 8 if(n % i == 0) 9 CalcIntDecomModeNum(n/i); 10 11
五.给定 a, 分治法设计出 a^n 的算法
1 double CalcPow(double a, int n) 2 3 if(n == 0) return 1.0; 4 double b = CalcPow(a, n/2); 5 b *= b; 6 if(n%2==1) b *= a; // 处理奇数次幂的情况 7 return b; 8
六.给定两个长度相等的数组,分治算法求出合并后的排序数组的中位数。
1 #include <iostream> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <string.h> 5 using namespace std; 6 const int maxn = 1000; 7 int a[maxn], b[maxn]; 8 int CalcMedian(int a[], int n) 9 10 if(n%2 == 0) 11 return (a[n/2] + a[n/2-1])/2; 12 else 13 return a[n/2]; 14 15 16 int CalcArrayMedian(int A[], int B[], int n) 17 18 int m1, m2; 19 if(n <= 0) return -1; 20 if(n == 1) return (A[0] + B[0])/2; 21 if(n == 2) return (max(A[0], B[0]) + min(A[1], B[1]))/2; 22 23 m1 = CalcMedian(A, n); 24 m2 = CalcMedian(B, n); 25 26 if(m1 == m2) return m1; 27 if(m1 < m2) 28 29 if(n%2 == 0) return CalcArrayMedian(A + n/2 - 1, B, n/2 + 1); 30 else return CalcArrayMedian(A + n/2, B, n/2+1); 31 32 else 33 34 if(n%2 == 0) return CalcArrayMedian(B + n/2 - 1, A, n/2 + 1); 35 else return CalcArrayMedian(B + n/2, A, n/2 + 1); 36 37 38 int main() 39 40 int m; 41 cin>>m; 42 for(int i = 0; i < m; i++) cin>>a[i]; 43 for(int i = 0; i < m; i++) cin>>b[i]; 44 int mid = CalcArrayMedian(a,b,m); 45 cout<<mid<<endl; 46 return 0; 47
以上是关于分治法习题的主要内容,如果未能解决你的问题,请参考以下文章