Linux中的两个经典宏定义:获取结构体成员地址,根据成员地址获得结构体地址;Linux中双向链表的经典实现。
Posted zhihui-3669
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux中的两个经典宏定义:获取结构体成员地址,根据成员地址获得结构体地址;Linux中双向链表的经典实现。相关的知识,希望对你有一定的参考价值。
倘若你查看过Linux Kernel的源码,那么你对 offsetof 和 container_of 这两个宏应该不陌生。这两个宏最初是极客写出的,后来在Linux内核中被推广使用。
1. offsetof
1.1 offsetof介绍
定义:offsetof在linux内核的include/linux/stddef.h中定义。#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
说明:获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
(01) ( (TYPE *)0 ) 将零转型为TYPE类型指针,即TYPE类型的指针的地址是0。
(02) ((TYPE *)0)->MEMBER 访问结构中的数据成员。
(03) &( ( (TYPE *)0 )->MEMBER ) 取出数据成员的地址。由于TYPE的地址是0,这里获取到的地址就是相对MEMBER在TYPE中的偏移。
(04) (size_t)(&(((TYPE*)0)->MEMBER)) 结果转换类型。对于32位系统而言,size_t是unsigned int类型;对于64位系统而言,size_t是unsigned long类型。
1.2 offsetof示例
代码(offset_test.c)
#include <stdio.h>
// 获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
struct student
char gender;
int id;
int age;
char name[20];
;
void main()
int gender_offset, id_offset, age_offset, name_offset;
gender_offset = offsetof(struct student, gender);
id_offset = offsetof(struct student, id);
age_offset = offsetof(struct student, age);
name_offset = offsetof(struct student, name);
printf("gender_offset = %d\\n", gender_offset);
printf("id_offset = %d\\n", id_offset);
printf("age_offset = %d\\n", age_offset);
printf("name_offset = %d\\n", name_offset);
结果:
gender_offset = 0 id_offset = 4 age_offset = 8 name_offset = 12
说明:简单说说"为什么id的偏移值是4,而不是1"。我的运行环境是linux系统,32位的x86架构。这就意味着cpu的数据总线宽度为32,每次能够读取4字节数据。gcc对代码进行处理的时候,是按照4字节对齐的。所以,即使gender是char(一个字节)类型,但是它仍然是4字节对齐的!
1.3 offsetof图解
TYPE是结构体,它代表"整体";而MEMBER是成员,它是整体中的某一部分。
将offsetof看作一个数学问题来看待,问题就相当简单了:已知‘整体‘和该整体中‘某一个部分‘,而计算该部分在整体中的偏移。
2. container_of
2.1 container_of介绍
定义:container_of在linux内核的include/linux/kernel.h中定义。
#define container_of(ptr, type, member) ( const typeof( ((type *)0)->member ) *__mptr = (ptr); (type *)( (char *)__mptr - offsetof(type,member) );)
说明:根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针。
(01) typeof( ( (type *)0)->member ) 取出member成员的变量类型。
(02) const typeof( ((type *)0)->member ) *__mptr = (ptr) 定义变量__mptr指针,并将ptr赋值给__mptr。经过这一步,__mptr为member数据类型的常量指针,其指向ptr所指向的地址。
(04) (char *)__mptr 将__mptr转换为字节型指针。
(05) offsetof(type,member)) 就是获取"member成员"在"结构体type"中的位置偏移。
(06) (char *)__mptr - offsetof(type,member)) 就是用来获取"结构体type"的指针的起始地址(为char *型指针)。
(07) (type *)( (char *)__mptr - offsetof(type,member) ) 就是将"char *类型的结构体type的指针"转换为"type *类型的结构体type的指针"。
2.2 container_of示例
代码(container_test.c)
#include <stdio.h>
#include <string.h>
// 获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
// 根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针
#define container_of(ptr, type, member) ( \\
const typeof( ((type *)0)->member ) *__mptr = (ptr); \\
(type *)( (char *)__mptr - offsetof(type,member) );)
struct student
char gender;
int id;
int age;
char name[20];
;
void main()
struct student stu;
struct student *pstu;
stu.gender = ‘1‘;
stu.id = 9527;
stu.age = 24;
strcpy(stu.name, "zhouxingxing");
// 根据"id地址" 获取 "结构体的地址"。
pstu = container_of(&stu.id, struct student, id);
// 根据获取到的结构体student的地址,访问其它成员
printf("gender= %c\\n", pstu->gender);
printf("age= %d\\n", pstu->age);
printf("name= %s\\n", pstu->name);
结果:
gender= 1 age= 24 name= zhouxingxing
2.3 container_of图解
type是结构体,它代表"整体";而member是成员,它是整体中的某一部分,而且member的地址是已知的。
将offsetof看作一个数学问题来看待,问题就相当简单了:已知‘整体‘和该整体中‘某一个部分‘,要根据该部分的地址,计算出整体的地址。
Linux中双向链表的经典实现
1. Linux中双向链表介绍
Linux双向链表的定义主要涉及到两个文件:
include/linux/types.h
include/linux/list.h
Linux中双向链表的使用思想
它是将双向链表节点嵌套在其它的结构体中;在遍历链表的时候,根据双链表节点的指针获取"它所在结构体的指针",从而再获取数据。
我举个例子来说明,可能比较容易理解。假设存在一个社区中有很多人,每个人都有姓名和年龄。通过双向链表将人进行关联的模型图如下:
person代表人,它有name和age属性。为了通过双向链表对person进行链接,我们在person中添加了list_head属性。通过list_head,我们就将person关联起来了。
struct person int age; char name[20]; struct list_head list; ;
2. Linux中双向链表的源码分析
(01). 节点定义
struct list_head struct list_head *next, *prev; ;
虽然名称list_head,但是它既是双向链表的表头,也代表双向链表的节点。
(02). 初始化节点
#define LIST_HEAD_INIT(name) &(name), &(name)
#define LIST_HEAD(name) \\
struct list_head name = LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)
list->next = list;
list->prev = list;
LIST_HEAD的作用是定义表头(节点):新建双向链表表头name,并设置name的前继节点和后继节点都是指向name本身。
LIST_HEAD_INIT的作用是初始化节点:设置name节点的前继节点和后继节点都是指向name本身。
INIT_LIST_HEAD和LIST_HEAD_INIT一样,是初始化节点:将list节点的前继节点和后继节点都是指向list本身。
(03). 添加节点
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
static inline void list_add(struct list_head *new, struct list_head *head)
__list_add(new, head, head->next);
static inline void list_add_tail(struct list_head *new, struct list_head *head)
__list_add(new, head->prev, head);
__list_add(new, prev, next)的作用是添加节点:将new插入到prev和next之间。在linux中,以"__"开头的函数意味着是内核的内部接口,外部不应该调用该接口。
list_add(new, head)的作用是添加new节点:将new添加到head之后,是new称为head的后继节点。
list_add_tail(new, head)的作用是添加new节点:将new添加到head之前,即将new添加到双链表的末尾。
(04). 删除节点
static inline void __list_del(struct list_head * prev, struct list_head * next)
next->prev = prev;
prev->next = next;
static inline void list_del(struct list_head *entry)
__list_del(entry->prev, entry->next);
static inline void __list_del_entry(struct list_head *entry)
__list_del(entry->prev, entry->next);
static inline void list_del_init(struct list_head *entry)
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
__list_del(prev, next) 和__list_del_entry(entry)都是linux内核的内部接口。
__list_del(prev, next) 的作用是从双链表中删除prev和next之间的节点。
__list_del_entry(entry) 的作用是从双链表中删除entry节点。
list_del(entry) 和 list_del_init(entry)是linux内核的对外接口。
list_del(entry) 的作用是从双链表中删除entry节点。
list_del_init(entry) 的作用是从双链表中删除entry节点,并将entry节点的前继节点和后继节点都指向entry本身
判断双链表是否为空
static inline int list_empty(const struct list_head *head) return head->next == head;
list_empty(head)的作用是判断双链表是否为空。它是通过区分"表头的后继节点"是不是"表头本身"来进行判断的。
3. Linux中双向链表的使用示例
双向链表代码(list.h)
1 #ifndef _LIST_HEAD_H 2 #define _LIST_HEAD_H 3 4 // 双向链表节点 5 struct list_head 6 struct list_head *next, *prev; 7 ; 8 9 // 初始化节点:设置name节点的前继节点和后继节点都是指向name本身。 10 #define LIST_HEAD_INIT(name) &(name), &(name) 11 12 // 定义表头(节点):新建双向链表表头name,并设置name的前继节点和后继节点都是指向name本身。 13 #define LIST_HEAD(name) 14 struct list_head name = LIST_HEAD_INIT(name) 15 16 // 初始化节点:将list节点的前继节点和后继节点都是指向list本身。 17 static inline void INIT_LIST_HEAD(struct list_head *list) 18 19 list->next = list; 20 list->prev = list; 21 22 23 // 添加节点:将new插入到prev和next之间。 24 static inline void __list_add(struct list_head *new, 25 struct list_head *prev, 26 struct list_head *next) 27 28 next->prev = new; 29 new->next = next; 30 new->prev = prev; 31 prev->next = new; 32 33 34 // 添加new节点:将new添加到head之后,是new称为head的后继节点。 35 static inline void list_add(struct list_head *new, struct list_head *head) 36 37 __list_add(new, head, head->next); 38 39 40 // 添加new节点:将new添加到head之前,即将new添加到双链表的末尾。 41 static inline void list_add_tail(struct list_head *new, struct list_head *head) 42 43 __list_add(new, head->prev, head); 44 45 46 // 从双链表中删除entry节点。 47 static inline void __list_del(struct list_head * prev, struct list_head * next) 48 49 next->prev = prev; 50 prev->next = next; 51 52 53 // 从双链表中删除entry节点。 54 static inline void list_del(struct list_head *entry) 55 56 __list_del(entry->prev, entry->next); 57 58 59 // 从双链表中删除entry节点。 60 static inline void __list_del_entry(struct list_head *entry) 61 62 __list_del(entry->prev, entry->next); 63 64 65 // 从双链表中删除entry节点,并将entry节点的前继节点和后继节点都指向entry本身。 66 static inline void list_del_init(struct list_head *entry) 67 68 __list_del_entry(entry); 69 INIT_LIST_HEAD(entry); 70 71 72 // 用new节点取代old节点 73 static inline void list_replace(struct list_head *old, 74 struct list_head *new) 75 76 new->next = old->next; 77 new->next->prev = new; 78 new->prev = old->prev; 79 new->prev->next = new; 80 81 82 // 双链表是否为空 83 static inline int list_empty(const struct list_head *head) 84 85 return head->next == head; 86 87 88 // 获取"MEMBER成员"在"结构体TYPE"中的位置偏移 89 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) 90 91 // 根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针 92 #define container_of(ptr, type, member) ( 93 const typeof( ((type *)0)->member ) *__mptr = (ptr); 94 (type *)( (char *)__mptr - offsetof(type,member) );) 95 96 // 遍历双向链表 97 #define list_for_each(pos, head) 98 for (pos = (head)->next; pos != (head); pos = pos->next) 99 100 #define list_for_each_safe(pos, n, head) 101 for (pos = (head)->next, n = pos->next; pos != (head); 102 pos = n, n = pos->next) 103 104 #define list_entry(ptr, type, member) 105 container_of(ptr, type, member) 106 107 #endif
双向链表测试代码(test.c)
1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 #include "list.h" 5 6 struct person 7 8 int age; 9 char name[20]; 10 struct list_head list; 11 ; 12 13 void main(int argc, char* argv[]) 14 15 struct person *pperson; 16 struct person person_head; 17 struct list_head *pos, *next; 18 int i; 19 20 // 初始化双链表的表头 21 INIT_LIST_HEAD(&person_head.list); 22 23 // 添加节点 24 for (i=0; i<5; i++) 25 26 pperson = (struct person*)malloc(sizeof(struct person)); 27 pperson->age = (i+1)*10; 28 sprintf(pperson->name, "%d", i+1); 29 // 将节点链接到链表的末尾 30 // 如果想把节点链接到链表的表头后面,则使用 list_add 31 list_add_tail(&(pperson->list), &(person_head.list)); 32 33 34 // 遍历链表 35 printf("==== 1st iterator d-link ====\\n"); 36 list_for_each(pos, &person_head.list) 37 38 pperson = list_entry(pos, struct person, list); 39 printf("name:%-2s, age:%d\\n", pperson->name, pperson->age); 40 41 42 // 删除节点age为20的节点 43 printf("==== delete node(age:20) ====\\n"); 44 list_for_each_safe(pos, next, &person_head.list) 45 46 pperson = list_entry(pos, struct person, list); 47 if(pperson->age == 20) 48 49 list_del_init(pos); 50 free(pperson); 51 52 53 54 // 再次遍历链表 55 printf("==== 2nd iterator d-link ====\\n"); 56 list_for_each(pos, &person_head.list) 57 58 pperson = list_entry(pos, struct person, list); 59 printf("name:%-2s, age:%d\\n", pperson->name, pperson->age); 60 61 62 // 释放资源 63 list_for_each_safe(pos, next, &person_head.list) 64 65 pperson = list_entry(pos, struct person, list); 66 list_del_init(pos); 67 free(pperson); 68 69 70
运行结果:
==== 1st iterator d-link ==== name:1 , age:10 name:2 , age:20 name:3 , age:30 name:4 , age:40 name:5 , age:50 ==== delete node(age:20) ==== ==== 2nd iterator d-link ==== name:1 , age:10 name:3 , age:30 name:4 , age:40 name:5 , age:50
摘自:
https://www.cnblogs.com/alantu2018/p/8465133.html
以上是关于Linux中的两个经典宏定义:获取结构体成员地址,根据成员地址获得结构体地址;Linux中双向链表的经典实现。的主要内容,如果未能解决你的问题,请参考以下文章