数据结构优化建图总结

Posted lcyfrog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构优化建图总结相关的知识,希望对你有一定的参考价值。

数据结构优化建图总结

线段树优化建图

把要连的区间拆成log个点(线段树上的点)连要要连的点上,如果是区间连区间可以建\(\log^2\) 条边

注意,区间连进去和连出来的边顺序不一样,线段树建法也不同

  1. 单点连区间(连进去) 由于本质是链接所有根节点,线段树父亲向儿子连零边,保证能到达
  2. 区间连单点(连出去)由于所有根节点连这个点,线段树儿子向父亲连零边,能够连出去

此时就需要两颗线段树

例题:CF786B

我会告诉你们用大根堆维护dijkstra还过了前四个点 改longlong看线段树看了半天吗(真长)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define inf 99264435330203ll
using namespace std;
long long read()
    long long x=0,pos=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') pos=0;
    for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
    return pos?x:-x;

long long n,m,s,r1,r2;
const long long N = 2000001;
long long ls[N<<1],rs[N<<1],tot;
struct node
    long long v,nex,w;
edge[N<<1];
long long head[N<<1],top;
void add(long long u,long long v,long long w)
    edge[++top].v=v;
    edge[top].nex=head[u];
    edge[top].w=w;
    head[u]=top;

void build1(long long &now,long long l,long long r)
    if(l==r)
        now=l;
        return;
    
    now=++tot;
    long long mid=(l+r)>>1;
    build1(ls[now],l,mid);
    build1(rs[now],mid+1,r);
    add(now,ls[now],0);
    add(now,rs[now],0);

void build2(long long &now,long long l,long long r)
    if(l==r)
        now=l;
        return;
    
    now=++tot;
    long long mid=(l+r)>>1;
    build2(ls[now],l,mid);
    build2(rs[now],mid+1,r);
    add(ls[now],now,0);
    add(rs[now],now,0);

void modify1(long long now,long long l,long long r,long long ql,long long qr,long long u,long long w)
    if(ql<=l&&r<=qr)
        add(u,now,w);
        return;
    
    long long mid=(l+r)>>1;
    if(ql<=mid) modify1(ls[now],l,mid,ql,qr,u,w);
    if(mid<qr) modify1(rs[now],mid+1,r,ql,qr,u,w);

void modify2(long long now,long long l,long long r,long long ql,long long qr,long long u,long long w)
    if(ql<=l&&r<=qr)
        add(now,u,w);
        return;
    
    long long mid=(l+r)>>1;
    if(ql<=mid) modify2(ls[now],l,mid,ql,qr,u,w);
    if(mid<qr) modify2(rs[now],mid+1,r,ql,qr,u,w);

long long dis[N<<1],vis[N<<1];
struct tp
    long long p,w;
;
struct cmp
    bool operator()(tp a,tp b)
        return a.w>b.w;
    
;
long long ans=0;
void dijkstra(long long s)
    priority_queue<tp,vector<tp>,cmp>q;
    for(long long i=1;i<=tot;i++)
        dis[i]=inf;vis[i]=0; 
    
    dis[s]=0;
    tp f;f.p=s;f.w=0;
    q.push(f);
    while(!q.empty())
        tp nt=q.top();
        q.pop();
        long long now=nt.p;
        if(vis[now]) continue;
        else vis[now]=1;
        for(int i=head[now];i;i=edge[i].nex)
            long long nex=edge[i].v;
            if(dis[nex]>dis[now]+edge[i].w)
                dis[nex]=dis[now]+edge[i].w;
                if(!vis[nex])
                    tp to_push;
                    to_push.p=nex;
                    to_push.w=dis[nex];
                    q.push(to_push);
                
            
        
    
    for(long long i=1;i<=n;i++)
        printf("%lld ",dis[i]>=inf?-1:dis[i]);
    

int main()
    n=read(),m=read(),s=read();
    tot=n;
    build1(r1,1,n);
    build2(r2,1,n);
    for(long long i=1;i<=m;i++)
        long long opt=read();
        if(opt==1)
            long long v=read(),u=read(),w=read();
            add(v,u,w);
        else if(opt==2)
            long long v=read(),l=read(),r=read(),w=read();
            modify1(r1,1,n,l,r,v,w);
        else
            long long v=read(),l=read(),r=read(),w=read();
            modify2(r2,1,n,l,r,v,w);
        
    
    dijkstra(s);
    return 0;

K-D 树优化建图

NOI 2019考到了所以写一写

竟然1A了。。。(可能是之前一些KDT的题调了好久所以比较熟悉

思路跟线段树的差不多,这题不过空间开不下,所以考虑不保存边

考虑dijkstra算法中每个点只能作为中间节点松弛连的节点一次(vis)

于是建边的复杂度就跟每次直接K-D树上查询复杂度一样啦

具体来说,

  1. 如果当前点是原来的点,直接上树查询并松弛

  2. 如果是树上的点,它不可能再向树上区间连边,只连向它的左右儿子和对应的原点

码量也不是很大

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 1926081700;
using namespace std;
int read()
    int x=0,pos=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') pos=0;
    for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
    return pos?x:-x;
 
const int N = 75001;
struct point
    int x[2],ori;
p[N<<1];
struct node
    int mx[2],mi[2],sz,ord;
    point c;
t[N<<1];
int ls[N<<1],rs[N<<1];
int n,m,w,h,tot,D;
int operator < (point a,point b)
    return a.x[D]<b.x[D];

int operator > (point a,point b)
    return a.x[D]>b.x[D];

inline void push_up(int now)
    int l=ls[now],r=rs[now];
    t[now].sz=t[l].sz+t[r].sz+1;
    t[now].mi[0]=t[now].mx[0]=t[now].c.x[0];t[now].mi[1]=t[now].mx[1]=t[now].c.x[1];
    if(l) t[now].mi[0]=min(t[now].mi[0],t[l].mi[0]),t[now].mi[1]=min(t[now].mi[1],t[l].mi[1]),t[now].mx[0]=max(t[now].mx[0],t[l].mx[0]),t[now].mx[1]=max(t[now].mx[1],t[l].mx[1]);
    if(r) t[now].mi[0]=min(t[now].mi[0],t[r].mi[0]),t[now].mi[1]=min(t[now].mi[1],t[r].mi[1]),t[now].mx[0]=max(t[now].mx[0],t[r].mx[0]),t[now].mx[1]=max(t[now].mx[1],t[r].mx[1]);

inline void build(int &now,int l,int r,int d)
    if(l>r) return; 
    now=++tot;int mid=(l+r)>>1;
    D=d;nth_element(p+l,p+mid,p+r+1);t[now].c=p[mid];t[now].ord=p[mid].ori;
    build(ls[now],l,mid-1,d^1);build(rs[now],mid+1,r,d^1);
    push_up(now);
 
struct sqr
    int x1,x2,y1,y2,w;
qu[N<<1];
struct graph
    int v,nex;
edge[N<<1];
int tope=0,head[N],dis[N<<1],vis[N<<1],rt;
void add(int u,int v)
    edge[++tope].v=v;
    edge[tope].nex=head[u];
    head[u]=tope;

struct type
    int pt,w;
;
struct cmp
    int operator()(type a,type b)
        return a.w>b.w;
    
;
priority_queue<type,vector<type>,cmp> q;
inline type mk(int a,int b)
    type nw;nw.pt=a,nw.w=b;return nw;

inline void relax(int u,int v,int w)
    if(dis[v]>dis[u]+w)
        dis[v]=dis[u]+w;
        if(!vis[v])
            q.push(mk(v,dis[v]));
        
    

inline int totalin(int now,sqr tp)
    return (t[now].mi[0]>=tp.x1&&t[now].mx[0]<=tp.x2&&t[now].mi[1]>=tp.y1&&t[now].mx[1]<=tp.y2); 

inline int totalout(int now,sqr tp)
    return (t[now].mx[0]<tp.x1||t[now].mi[0]>tp.x2||t[now].mx[1]<tp.y1||t[now].mi[1]>tp.y2); 

inline int ptin(point now,sqr tp)
    return (now.x[0]>=tp.x1&&now.x[0]<=tp.x2&&now.x[1]>=tp.y1&&now.x[1]<=tp.y2); 

inline void query(int now,sqr tp,int u)
    if(totalin(now,tp))
        relax(u,now,tp.w);
        return;
    
    if(ptin(t[now].c,tp)) relax(u,t[now].ord,tp.w);
    int l=ls[now],r=rs[now];
    if(!totalout(l,tp)) query(l,tp,u);
    if(!totalout(r,tp)) query(r,tp,u); 

inline void dijkstra()
    q.push(mk(1,0));dis[1]=0;
    for(int i=2;i<=tot;i++)
        dis[i]=inf;
    
    while(!q.empty())
        int now=q.top().pt;q.pop();
        if(vis[now]) continue;else vis[now]=1;
        if(now<=n)
            for(int i=head[now];i;i=edge[i].nex)
                int v=edge[i].v;
                query(rt,qu[v],now);
            
        else
            relax(now,ls[now],0);
            relax(now,rs[now],0);
            relax(now,t[now].ord,0); 
        
    
    for(int i=2;i<=n;i++)
        printf("%d\n",dis[i]);
    

int main()
    n=read(),m=read(),w=read(),h=read();
    for(int i=1;i<=n;i++)
        p[i].x[0]=read(),p[i].x[1]=read(),p[i].ori=i;
    
    tot=n;
    build(rt,1,n,1);
    for(int i=1;i<=m;i++)
        int u=read();
        qu[i].w=read(),qu[i].x1=read(),qu[i].x2=read(),qu[i].y1=read(),qu[i].y2=read();
        add(u,i);
    
    dijkstra();
    return 0;

后记

没有听说其他优化建边的了。。。应该就这两个吧

以上是关于数据结构优化建图总结的主要内容,如果未能解决你的问题,请参考以下文章

2019北京集训2duck 线段树优化建图+tarjan

AcWing 4246. 最短路径和(反向建图+链式前向星+堆优化)

786B - Legacy(线段树 + 最短路)线段树优化建图

算法总结

luogu P5676 [GZOI2017]小z玩游戏 |Tarjan+技巧优化建图

线段树优化建图