sparkspark应用(分布式估算圆周率+基于Spark MLlib的贷款风险预测)
Posted cq-lqj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sparkspark应用(分布式估算圆周率+基于Spark MLlib的贷款风险预测)相关的知识,希望对你有一定的参考价值。
一、分布式估算圆周率
计算原理:
假设正方形的面积S等于x²,而正方形的内切圆的面积C等于Pi×(x/2)²,因此圆面积与正方形面积之比C/S就为Pi/4,于是就有Pi=4×C/S。
可以利用计算机随机产生大量位于正方形内部的点,通过点的数量去近似表示面积。假设位于正方形中点的数量为Ps,落在圆内的点的数量为Pc,则随机点的数量趋近于无穷时,4×Pc/Ps将逼近于Pi。
idea实现代码:
package com.hadoop import scala.math.random import org.apache.spark._ object sparkPi def main(args: Array[String]) val conf = new SparkConf().setAppName("sparkPi") val spark = new SparkContext(conf) val slices = if (args.length > 0) args(0).toInt else 2 val n = 10000 * slices val count = spark.parallelize(1 to n, slices).map i => val x = random * 2 - 1 val y = random * 2 - 1 if (x * x + y * y < 1) 1 else 0 .reduce(_ + _) println("Pi is roughly " + 4.0 * count / n) spark.stop()
分布式运行测试:
分布式运行,指在客户端以命令行方式想spark集群提交jar包的运行方式,所以需要将上面的程序编译成jar包(俗称打jar包)
打jar包的方式:
File -- Project Structure -- Artifacts -- + -- jar -- From modules with dependencies
-- 将Main Class设置为com.hadoop.sparkPi -- OK -- 在Output Layout下只留下一个compile output -- OK
-- Build-Build Artifacts-Build
复制到spark安装目录下:
[hadoop@hadoop01 ~]$ cp /home/hadoop/IdeaProjects/sparkapp/out/artifacts/sparkapp_jar/sparkapp.jar /home/hadoop/spark-2.4.4-bin-without-hadoop
跳转到spark安装目录下运行:、
[hadoop@hadoop01 ~]$ cd spark-2.4.4-bin-without-hadoop
A.本地模式
[hadoop@hadoop01 spark-2.4.4-bin-without-hadoop]$ bin/spark-submit --master local --class com.hadoop.sparkPi sparkapp.jar 2>&1 | grep "Pi is roughly" 运行结果: SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/hadoop/spark-2.4.4-bin-without-hadoop/jars/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-3.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 2019-10-04 11:12:09,551 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2019-10-04 11:12:09,777 INFO spark.SparkContext: Running Spark version 2.4.4 2019-10-04 11:12:09,801 INFO spark.SparkContext: Submitted application: sparkPi 2019-10-04 11:12:09,862 INFO spark.SecurityManager: Changing view acls to: hadoop 2019-10-04 11:12:09,862 INFO spark.SecurityManager: Changing modify acls to: hadoop 2019-10-04 11:12:09,862 INFO spark.SecurityManager: Changing view acls groups to: 2019-10-04 11:12:09,862 INFO spark.SecurityManager: Changing modify acls groups to: 2019-10-04 11:12:09,862 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set() 2019-10-04 11:12:10,140 INFO util.Utils: Successfully started service ‘sparkDriver‘ on port 34911. 2019-10-04 11:12:10,168 INFO spark.SparkEnv: Registering MapOutputTracker 2019-10-04 11:12:10,190 INFO spark.SparkEnv: Registering BlockManagerMaster 2019-10-04 11:12:10,191 INFO storage.BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 2019-10-04 11:12:10,192 INFO storage.BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 2019-10-04 11:12:10,204 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-f08f8fb2-3c19-4f99-b24e-df08f23cff23 2019-10-04 11:12:10,220 INFO memory.MemoryStore: MemoryStore started with capacity 1048.8 MB 2019-10-04 11:12:10,235 INFO spark.SparkEnv: Registering OutputCommitCoordinator 2019-10-04 11:12:10,300 INFO util.log: Logging initialized @2617ms 2019-10-04 11:12:10,353 INFO server.Server: jetty-9.3.z-SNAPSHOT, build timestamp: 2018-06-06T01:11:56+08:00, git hash: 84205aa28f11a4f31f2a3b86d1bba2cc8ab69827 2019-10-04 11:12:10,371 INFO server.Server: Started @2689ms 2019-10-04 11:12:10,385 INFO server.AbstractConnector: Started ServerConnector@3c2772d1HTTP/1.1,[http/1.1]0.0.0.0:4040 2019-10-04 11:12:10,385 INFO util.Utils: Successfully started service ‘SparkUI‘ on port 4040. 2019-10-04 11:12:10,411 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@c3c4c1c/jobs,null,AVAILABLE,@Spark 2019-10-04 11:12:10,411 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@9f6e406/jobs/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,412 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7a94b64e/jobs/job,null,AVAILABLE,@Spark 2019-10-04 11:12:10,413 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@12477988/jobs/job/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,414 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@2caf6912/stages,null,AVAILABLE,@Spark 2019-10-04 11:12:10,415 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@73d69c0f/stages/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,415 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@34237b90/stages/stage,null,AVAILABLE,@Spark 2019-10-04 11:12:10,416 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@d400943/stages/stage/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,417 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@22101c80/stages/pool,null,AVAILABLE,@Spark 2019-10-04 11:12:10,417 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@31ff1390/stages/pool/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,417 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@759d81f3/storage,null,AVAILABLE,@Spark 2019-10-04 11:12:10,418 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@781a9412/storage/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,418 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5a4c638d/storage/rdd,null,AVAILABLE,@Spark 2019-10-04 11:12:10,419 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@13e698c7/storage/rdd/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,419 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@aed0151/environment,null,AVAILABLE,@Spark 2019-10-04 11:12:10,419 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@267bbe1a/environment/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,420 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@1f12e153/executors,null,AVAILABLE,@Spark 2019-10-04 11:12:10,420 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@389562d6/executors/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,421 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5a101b1c/executors/threadDump,null,AVAILABLE,@Spark 2019-10-04 11:12:10,422 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@2160e52a/executors/threadDump/json,null,AVAILABLE,@Spark 2019-10-04 11:12:10,428 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@29f0802c/static,null,AVAILABLE,@Spark 2019-10-04 11:12:10,429 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@779de014/,null,AVAILABLE,@Spark 2019-10-04 11:12:10,431 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5c41d037/api,null,AVAILABLE,@Spark 2019-10-04 11:12:10,432 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@1450078a/jobs/job/kill,null,AVAILABLE,@Spark 2019-10-04 11:12:10,433 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@c68a5f8/stages/stage/kill,null,AVAILABLE,@Spark 2019-10-04 11:12:10,436 INFO ui.SparkUI: Bound SparkUI to 0.0.0.0, and started at http://hadoop01:4040 2019-10-04 11:12:10,467 INFO spark.SparkContext: Added JAR file:/home/hadoop/spark-2.4.4-bin-without-hadoop/sparkapp.jar at spark://hadoop01:34911/jars/sparkapp.jar with timestamp 1570158730467 2019-10-04 11:12:10,513 INFO executor.Executor: Starting executor ID driver on host localhost 2019-10-04 11:12:10,583 INFO util.Utils: Successfully started service ‘org.apache.spark.network.netty.NettyBlockTransferService‘ on port 37776. 2019-10-04 11:12:10,583 INFO netty.NettyBlockTransferService: Server created on hadoop01:37776 2019-10-04 11:12:10,584 INFO storage.BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 2019-10-04 11:12:10,606 INFO storage.BlockManagerMaster: Registering BlockManager BlockManagerId(driver, hadoop01, 37776, None) 2019-10-04 11:12:10,611 INFO storage.BlockManagerMasterEndpoint: Registering block manager hadoop01:37776 with 1048.8 MB RAM, BlockManagerId(driver, hadoop01, 37776, None) 2019-10-04 11:12:10,614 INFO storage.BlockManagerMaster: Registered BlockManager BlockManagerId(driver, hadoop01, 37776, None) 2019-10-04 11:12:10,616 INFO storage.BlockManager: Initialized BlockManager: BlockManagerId(driver, hadoop01, 37776, None) 2019-10-04 11:12:10,745 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@6aef4eb8/metrics/json,null,AVAILABLE,@Spark 2019-10-04 11:12:11,013 INFO spark.SparkContext: Starting job: reduce at sparkPi.scala:20 2019-10-04 11:12:11,036 INFO scheduler.DAGScheduler: Got job 0 (reduce at sparkPi.scala:20) with 2 output partitions 2019-10-04 11:12:11,036 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (reduce at sparkPi.scala:20) 2019-10-04 11:12:11,036 INFO scheduler.DAGScheduler: Parents of final stage: List() 2019-10-04 11:12:11,037 INFO scheduler.DAGScheduler: Missing parents: List() 2019-10-04 11:12:11,041 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at sparkPi.scala:16), which has no missing parents 2019-10-04 11:12:11,107 INFO memory.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1904.0 B, free 1048.8 MB) 2019-10-04 11:12:11,139 INFO memory.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1254.0 B, free 1048.8 MB) 2019-10-04 11:12:11,142 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on hadoop01:37776 (size: 1254.0 B, free: 1048.8 MB) 2019-10-04 11:12:11,144 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1161 2019-10-04 11:12:11,210 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at sparkPi.scala:16) (first 15 tasks are for partitions Vector(0, 1)) 2019-10-04 11:12:11,211 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks 2019-10-04 11:12:11,255 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, executor driver, partition 0, PROCESS_LOCAL, 7866 bytes) 2019-10-04 11:12:11,262 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0) 2019-10-04 11:12:11,271 INFO executor.Executor: Fetching spark://hadoop01:34911/jars/sparkapp.jar with timestamp 1570158730467 2019-10-04 11:12:11,346 INFO client.TransportClientFactory: Successfully created connection to hadoop01/192.168.1.100:34911 after 27 ms (0 ms spent in bootstraps) 2019-10-04 11:12:11,352 INFO util.Utils: Fetching spark://hadoop01:34911/jars/sparkapp.jar to /tmp/spark-c35e81e3-5419-4858-b25c-93fbbc73e431/userFiles-c7eb44d6-5f78-4f9e-bfdf-986881e946b4/fetchFileTemp656185270030476350.tmp 2019-10-04 11:12:11,390 INFO executor.Executor: Adding file:/tmp/spark-c35e81e3-5419-4858-b25c-93fbbc73e431/userFiles-c7eb44d6-5f78-4f9e-bfdf-986881e946b4/sparkapp.jar to class loader 2019-10-04 11:12:11,426 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 824 bytes result sent to driver 2019-10-04 11:12:11,429 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, executor driver, partition 1, PROCESS_LOCAL, 7923 bytes) 2019-10-04 11:12:11,431 INFO executor.Executor: Running task 1.0 in stage 0.0 (TID 1) 2019-10-04 11:12:11,437 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 199 ms on localhost (executor driver) (1/2) 2019-10-04 11:12:11,438 INFO executor.Executor: Finished task 1.0 in stage 0.0 (TID 1). 824 bytes result sent to driver 2019-10-04 11:12:11,445 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 17 ms on localhost (executor driver) (2/2) 2019-10-04 11:12:11,447 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 2019-10-04 11:12:11,449 INFO scheduler.DAGScheduler: ResultStage 0 (reduce at sparkPi.scala:20) finished in 0.392 s 2019-10-04 11:12:11,456 INFO scheduler.DAGScheduler: Job 0 finished: reduce at sparkPi.scala:20, took 0.442551 s Pi is roughly 3.1378 2019-10-04 11:12:11,466 INFO server.AbstractConnector: Stopped Spark@3c2772d1HTTP/1.1,[http/1.1]0.0.0.0:4040 2019-10-04 11:12:11,471 INFO ui.SparkUI: Stopped Spark web UI at http://hadoop01:4040 2019-10-04 11:12:11,481 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 2019-10-04 11:12:11,501 INFO memory.MemoryStore: MemoryStore cleared 2019-10-04 11:12:11,502 INFO storage.BlockManager: BlockManager stopped 2019-10-04 11:12:11,508 INFO storage.BlockManagerMaster: BlockManagerMaster stopped 2019-10-04 11:12:11,509 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 2019-10-04 11:12:11,518 INFO spark.SparkContext: Successfully stopped SparkContext 2019-10-04 11:12:11,520 INFO util.ShutdownHookManager: Shutdown hook called 2019-10-04 11:12:11,522 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-2edea92d-9604-43f3-99c1-8e541a518199 2019-10-04 11:12:11,527 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-c35e81e3-5419-4858-b25c-93fbbc73e431
如果只想显示结果,则执行:
[hadoop@hadoop01 spark-2.4.4-bin-without-hadoop]$ bin/spark-submit --master local --class com.hadoop.sparkPi sparkapp.jar 2>&1 | grep "Pi is roughly" 结果:Pi is roughly 3.1384
B.Yarn-cluster模式(需先启动hadoop与spark)
[hadoop@hadoop01 spark-2.4.4-bin-without-hadoop]$ bin/spark-submit --master yarn-cluster --class com.hadoop.sparkPi sparkapp.jar
输出内容:
2019-10-04 13:08:55,136 INFO yarn.Client:
client token: N/A
diagnostics: AM container is launched, waiting for AM container to Register with RM
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1570165734049
final status: UNDEFINED
tracking URL: http://hadoop01:8088/proxy/application_1570165372810_0002/
user: hadoop
结果在Tracking URL里的logs中的stdout中查看:
b_1:进入http://hadoop01:50070网页
b_2:点击logs里面的user_logs目录,如:/logs/userlogs/
b_3:点击对应的文件,如:application_1570165372810_0002(对应前面输出内容里面的文件)
b_4:点开里面的stdout,就可以看见输出结果了
输出结果:
Pi is roughly 3.1294
C.Yarn-client模式(需先启动hadoop与spark)
[hadoop@hadoop01 spark-2.4.4-bin-without-hadoop]$ bin/spark-submit --master yarn-client --class com.hadoop.sparkPi sparkapp.jar
二、基于Spark MLlib的贷款风险预测
创建工程,编辑启动配置:
Edit Configuration -- Application
Name (Credit)
Main Class (com.hadoop.Credit)
Program arguments (/home/hadoop/IdeaProjects/Gredit)
VM options (-Dspark.master=local -Dspark.app.name=Credit -server -XX:PermSize=128M -XX:MaxPermSize=256M)
添加spark依赖包:
File -- Project Structure -- Libraries -- + -- Java -- /home/hadoop/spark-2.4.4-bin-without-hadoop/jars下的所有jar包-OK
拷贝UserGredit.csv文件到 /home/hadoop/IdeaProjects/Gredit/ 目录下
UserGredit.csv内容:
1,1,18,4,2,1049,1,2,4,2,1,4,2,21,3,1,1,3,1,1,1
1,1,9,4,0,2799,1,3,2,3,1,2,1,36,3,1,2,3,2,1,1
1,2,12,2,9,841,2,4,2,2,1,4,1,23,3,1,1,2,1,1,1
1,1,12,4,0,2122,1,3,3,3,1,2,1,39,3,1,2,2,2,1,2
1,1,12,4,0,2171,1,3,4,3,1,4,2,38,1,2,2,2,1,1,2
1,1,10,4,0,2241,1,2,1,3,1,3,1,48,3,1,2,2,2,1,2
拷贝测试程序到运行界面(其中需要修改文件名):
package com.hadoop
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.tuning. ParamGridBuilder, CrossValidator
import org.apache.spark.ml. Pipeline, PipelineStage
import org.apache.spark.mllib.evaluation.RegressionMetrics
object Gredit
case class Credit(
creditability: Double,
balance: Double, duration: Double, history: Double, purpose: Double, amount: Double,
savings: Double, employment: Double, instPercent: Double, sexMarried: Double, guarantors: Double,
residenceDuration: Double, assets: Double, age: Double, concCredit: Double, apartment: Double,
credits: Double, occupation: Double, dependents: Double, hasPhone: Double, foreign: Double
)
def parseCredit(line: Array[Double]): Credit =
Credit(
line(0),
line(1) - 1, line(2), line(3), line(4), line(5),
line(6) - 1, line(7) - 1, line(8), line(9) - 1, line(10) - 1,
line(11) - 1, line(12) - 1, line(13), line(14) - 1, line(15) - 1,
line(16) - 1, line(17) - 1, line(18) - 1, line(19) - 1, line(20) - 1
)
def parseRDD(rdd: RDD[String]): RDD[Array[Double]] =
rdd.map(_.split(",")).map(_.map(_.toDouble))
def main(args: Array[String])
val conf = new SparkConf().setAppName("SparkDFebay")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext._
import sqlContext.implicits._
val creditDF = parseRDD(sc.textFile("UserGredit.csv")).map(parseCredit).toDF().cache()
creditDF.registerTempTable("credit")
creditDF.printSchema
creditDF.show
sqlContext.sql("SELECT creditability, avg(balance) as avgbalance, avg(amount) as avgamt, avg(duration) as avgdur FROM credit GROUP BY creditability ").show
creditDF.describe("balance").show
creditDF.groupBy("creditability").avg("balance").show
val featureCols = Array("balance", "duration", "history", "purpose", "amount",
"savings", "employment", "instPercent", "sexMarried", "guarantors",
"residenceDuration", "assets", "age", "concCredit", "apartment",
"credits", "occupation", "dependents", "hasPhone", "foreign")
val assembler = new VectorAssembler().setInputCols(featureCols).setOutputCol("features")
val df2 = assembler.transform(creditDF)
df2.show
val labelIndexer = new StringIndexer().setInputCol("creditability").setOutputCol("label")
val df3 = labelIndexer.fit(df2).transform(df2)
df3.show
val splitSeed = 5043
val Array(trainingData, testData) = df3.randomSplit(Array(0.7, 0.3), splitSeed)
val classifier = new RandomForestClassifier().setImpurity("gini").setMaxDepth(3).setNumTrees(20).setFeatureSubsetStrategy("auto").setSeed(5043)
val model = classifier.fit(trainingData)
val evaluator = new BinaryClassificationEvaluator().setLabelCol("label")
val predictions = model.transform(testData)
model.toDebugString
val accuracy = evaluator.evaluate(predictions)
println("accuracy before pipeline fitting" + accuracy)
val rm = new RegressionMetrics(
predictions.select("prediction", "label").rdd.map(x =>
(x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))
)
println("MSE: " + rm.meanSquaredError)
println("MAE: " + rm.meanAbsoluteError)
println("RMSE Squared: " + rm.rootMeanSquaredError)
println("R Squared: " + rm.r2)
println("Explained Variance: " + rm.explainedVariance + "\n")
val paramGrid = new ParamGridBuilder()
.addGrid(classifier.maxBins, Array(25, 31))
.addGrid(classifier.maxDepth, Array(5, 10))
.addGrid(classifier.numTrees, Array(20, 60))
.addGrid(classifier.impurity, Array("entropy", "gini"))
.build()
val steps: Array[PipelineStage] = Array(classifier)
val pipeline = new Pipeline().setStages(steps)
val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(10)
val pipelineFittedModel = cv.fit(trainingData)
val predictions2 = pipelineFittedModel.transform(testData)
val accuracy2 = evaluator.evaluate(predictions2)
println("accuracy after pipeline fitting" + accuracy2)
println(pipelineFittedModel.bestModel.asInstanceOf[org.apache.spark.ml.PipelineModel].stages(0))
pipelineFittedModel
.bestModel.asInstanceOf[org.apache.spark.ml.PipelineModel]
.stages(0)
.extractParamMap
val rm2 = new RegressionMetrics(
predictions2.select("prediction", "label").rdd.map(x =>
(x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))
)
println("MSE: " + rm2.meanSquaredError)
println("MAE: " + rm2.meanAbsoluteError)
println("RMSE Squared: " + rm2.rootMeanSquaredError)
println("R Squared: " + rm2.r2)
println("Explained Variance: " + rm2.explainedVariance + "\n")
第一次,运行报错:
Exception in thread "main" java.lang.IllegalArgumentException: System memory 425197568 must be at least 471859200.
在main主函数下:val conf = new SparkConf().setAppName("SparkDFebay")后面添加“.set("spark.testing.memory","2147480000")”
添加后:val conf = new SparkConf().setAppName("SparkDFebay").set("spark.testing.memory","2147480000")
第二次,RUN PROJECT 运行程序,查看结果:
输出结果:日志INFO太多了,看不到啥。考虑将INFO日志隐藏
解决方法:就是将spark安装文件夹下的默认日志配置文件拷贝到工程的src下并修改在控制台显示的日志的级别。
[hadoop@hadoop01 ~]$ cd spark-2.4.4-bin-without-hadoop/conf
[hadoop@hadoop01 conf]$ cp log4j.properties.template /home/hadoop/IdeaProjects/Gredit/src/
[hadoop@hadoop01 conf]$ cd /home/hadoop/IdeaProjects/Gredit/src/
[hadoop@hadoop01 src]$ mv log4j.properties.template log4j.properties
[hadoop@hadoop01 src]$ gedit log4j.properties
在日志的配置文件中修改日志级别,只将ERROR级别的日志输出在控制台
log4j.properties修改内容:
log4j.rootCategory=ERROR, console
第三次,运行查看结果:
Java HotSpot(TM) 64-Bit Server VM warning: ignoring option PermSize=128M; support was removed in 8.0
Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=256M; support was removed in 8.0
root
|-- creditability: double (nullable = false)
|-- balance: double (nullable = false)
|-- duration: double (nullable = false)
|-- history: double (nullable = false)
|-- purpose: double (nullable = false)
|-- amount: double (nullable = false)
|-- savings: double (nullable = false)
|-- employment: double (nullable = false)
|-- instPercent: double (nullable = false)
|-- sexMarried: double (nullable = false)
|-- guarantors: double (nullable = false)
|-- residenceDuration: double (nullable = false)
|-- assets: double (nullable = false)
|-- age: double (nullable = false)
|-- concCredit: double (nullable = false)
|-- apartment: double (nullable = false)
|-- credits: double (nullable = false)
|-- occupation: double (nullable = false)
|-- dependents: double (nullable = false)
|-- hasPhone: double (nullable = false)
|-- foreign: double (nullable = false)
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+
|creditability|balance|duration|history|purpose|amount|savings|employment|instPercent|sexMarried|guarantors|residenceDuration|assets| age|concCredit|apartment|credits|occupation|dependents|hasPhone|foreign|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+
| 1.0| 0.0| 18.0| 4.0| 2.0|1049.0| 0.0| 1.0| 4.0| 1.0| 0.0| 3.0| 1.0|21.0| 2.0| 0.0| 0.0| 2.0| 0.0| 0.0| 0.0|
| 1.0| 0.0| 9.0| 4.0| 0.0|2799.0| 0.0| 2.0| 2.0| 2.0| 0.0| 1.0| 0.0|36.0| 2.0| 0.0| 1.0| 2.0| 1.0| 0.0| 0.0|
| 1.0| 1.0| 12.0| 2.0| 9.0| 841.0| 1.0| 3.0| 2.0| 1.0| 0.0| 3.0| 0.0|23.0| 2.0| 0.0| 0.0| 1.0| 0.0| 0.0| 0.0|
| 1.0| 0.0| 12.0| 4.0| 0.0|2122.0| 0.0| 2.0| 3.0| 2.0| 0.0| 1.0| 0.0|39.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|
| 1.0| 0.0| 12.0| 4.0| 0.0|2171.0| 0.0| 2.0| 4.0| 2.0| 0.0| 3.0| 1.0|38.0| 0.0| 1.0| 1.0| 1.0| 0.0| 0.0| 1.0|
| 1.0| 0.0| 10.0| 4.0| 0.0|2241.0| 0.0| 1.0| 1.0| 2.0| 0.0| 2.0| 0.0|48.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+
+-------------+-------------------+------+------------------+
|creditability| avgbalance|avgamt| avgdur|
+-------------+-------------------+------+------------------+
| 1.0|0.16666666666666666|1870.5|12.166666666666666|
+-------------+-------------------+------+------------------+
+-------+-------------------+
|summary| balance|
+-------+-------------------+
| count| 6|
| mean|0.16666666666666666|
| stddev| 0.408248290463863|
| min| 0.0|
| max| 1.0|
+-------+-------------------+
+-------------+-------------------+
|creditability| avg(balance)|
+-------------+-------------------+
| 1.0|0.16666666666666666|
+-------------+-------------------+
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+
|creditability|balance|duration|history|purpose|amount|savings|employment|instPercent|sexMarried|guarantors|residenceDuration|assets| age|concCredit|apartment|credits|occupation|dependents|hasPhone|foreign| features|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+
| 1.0| 0.0| 18.0| 4.0| 2.0|1049.0| 0.0| 1.0| 4.0| 1.0| 0.0| 3.0| 1.0|21.0| 2.0| 0.0| 0.0| 2.0| 0.0| 0.0| 0.0|(20,[1,2,3,4,6,7,...|
| 1.0| 0.0| 9.0| 4.0| 0.0|2799.0| 0.0| 2.0| 2.0| 2.0| 0.0| 1.0| 0.0|36.0| 2.0| 0.0| 1.0| 2.0| 1.0| 0.0| 0.0|(20,[1,2,4,6,7,8,...|
| 1.0| 1.0| 12.0| 2.0| 9.0| 841.0| 1.0| 3.0| 2.0| 1.0| 0.0| 3.0| 0.0|23.0| 2.0| 0.0| 0.0| 1.0| 0.0| 0.0| 0.0|[1.0,12.0,2.0,9.0...|
| 1.0| 0.0| 12.0| 4.0| 0.0|2122.0| 0.0| 2.0| 3.0| 2.0| 0.0| 1.0| 0.0|39.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|[0.0,12.0,4.0,0.0...|
| 1.0| 0.0| 12.0| 4.0| 0.0|2171.0| 0.0| 2.0| 4.0| 2.0| 0.0| 3.0| 1.0|38.0| 0.0| 1.0| 1.0| 1.0| 0.0| 0.0| 1.0|[0.0,12.0,4.0,0.0...|
| 1.0| 0.0| 10.0| 4.0| 0.0|2241.0| 0.0| 1.0| 1.0| 2.0| 0.0| 2.0| 0.0|48.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|[0.0,10.0,4.0,0.0...|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+-----+
|creditability|balance|duration|history|purpose|amount|savings|employment|instPercent|sexMarried|guarantors|residenceDuration|assets| age|concCredit|apartment|credits|occupation|dependents|hasPhone|foreign| features|label|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+-----+
| 1.0| 0.0| 18.0| 4.0| 2.0|1049.0| 0.0| 1.0| 4.0| 1.0| 0.0| 3.0| 1.0|21.0| 2.0| 0.0| 0.0| 2.0| 0.0| 0.0| 0.0|(20,[1,2,3,4,6,7,...| 0.0|
| 1.0| 0.0| 9.0| 4.0| 0.0|2799.0| 0.0| 2.0| 2.0| 2.0| 0.0| 1.0| 0.0|36.0| 2.0| 0.0| 1.0| 2.0| 1.0| 0.0| 0.0|(20,[1,2,4,6,7,8,...| 0.0|
| 1.0| 1.0| 12.0| 2.0| 9.0| 841.0| 1.0| 3.0| 2.0| 1.0| 0.0| 3.0| 0.0|23.0| 2.0| 0.0| 0.0| 1.0| 0.0| 0.0| 0.0|[1.0,12.0,2.0,9.0...| 0.0|
| 1.0| 0.0| 12.0| 4.0| 0.0|2122.0| 0.0| 2.0| 3.0| 2.0| 0.0| 1.0| 0.0|39.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|[0.0,12.0,4.0,0.0...| 0.0|
| 1.0| 0.0| 12.0| 4.0| 0.0|2171.0| 0.0| 2.0| 4.0| 2.0| 0.0| 3.0| 1.0|38.0| 0.0| 1.0| 1.0| 1.0| 0.0| 0.0| 1.0|[0.0,12.0,4.0,0.0...| 0.0|
| 1.0| 0.0| 10.0| 4.0| 0.0|2241.0| 0.0| 1.0| 1.0| 2.0| 0.0| 2.0| 0.0|48.0| 2.0| 0.0| 1.0| 1.0| 1.0| 0.0| 1.0|[0.0,10.0,4.0,0.0...| 0.0|
+-------------+-------+--------+-------+-------+------+-------+----------+-----------+----------+----------+-----------------+------+----+----------+---------+-------+----------+----------+--------+-------+--------------------+-----+
以上是关于sparkspark应用(分布式估算圆周率+基于Spark MLlib的贷款风险预测)的主要内容,如果未能解决你的问题,请参考以下文章