Google Object detection配置与使用
Posted zhuchengchao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Google Object detection配置与使用相关的知识,希望对你有一定的参考价值。
前言:
本文记录了使用Google发布的Object detection(July 1st, 2019)接口,完成了对标注目标的检测。参考了很多博文,在此记录配置过程,方便之后的再次调用。
首先贴出完整的代码地址:https://github.com/tensorflow/models
Tensorflow Object Detection API:https://github.com/tensorflow/models/tree/master/research/object_detection
一、环境配置
参考网址:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
所有的环境都搭建在Anaconda创建的环境下
在windows10和Ubuntu下我都进行了配置,下方的配置会注明操作系统的区别
在上面参考网址上,已经明确给出了所需要的环境,直接用pip命令下载即可。
Protobuf 安装
下载地址:https://github.com/google/protobuf/releases
win:
-
win10系统下载了
protoc-3.9.1-win64.zip
,解压后将其中的protoc.exe
放置C:\\Windows
位置; -
通过命令窗口,定位到
models/research/
目录下,运行如下指令:# From /models/research/ protoc object_detection/protos/*.proto --python_out=.
此处我出现了
No such file or directory
的错误采用一个个文件名单独输入的方式即可,例如:
# C:\\Users\\Zhucc\\Desktop\\ObjDec\\models\\research>protoc object_detection/protos/anchor_generator.proto --python_out=.
Linux:
-
通过pip安装
pip install protobuf
,我的版本为3.9.1
-
定位到
models/research/
目录下,运行如下指令:# From /models/research/ protoc object_detection/protos/*.proto --python_out=.
一行命令搞定,很舒服
Python环境配置:
win
-
转到添加环境变量
-
可在系统变量/用户变量选项框中新建环境变量
-
变量名:PYTHONPATH
-
变量值:
-
C:\\Users\\Zhucc\\Desktop\\ObjDec\\models\\research
-
C:\\Users\\Zhucc\\Desktop\\ObjDec\\models\\research\\slim
-
Linux
-
转到
./models/research
目录下,运行如下命令:# From /models/research/ export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
COCO API 安装
win:
COCO对于Windows是不支持的,因此需要通过其他的方式安装
-
跳转至:https://github.com/philferriere/cocoapi 将代码下载好
-
win+r+cmd
运行终端,进入*/cocoapi-master/PythonAPI
-
运行如下命令:
python setup.py build_ext install
运行完成后,会发现
_mask.c
此文件被更新我电脑本身就存在Visual Studio2015,未出现任何错误
-
然后将
PythonAPI
中的pycocotools
放到*/models/research
目录下即可
参考网址:https://blog.csdn.net/benzhujie1245com/article/details/82686973
Linux:
只需按照官方的要求配置即可:
git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI make cp -r pycocotools <path_to_tensorflow>/models/research/
验证安装环境:
win:
-
进入
*/models/research/object_detection
下 -
用
Jupiter Notebook
打开object_detection_tutorial.ipynb
代码解析:略,后续补充
-
运行即可,若出现被框出来的狗/人/风筝呀就说明你已经基本成功的在win10环境下配置了运行环境了
注意:其实官方的代码是不会显示图片的,具体原因见如下网址:
https://blog.csdn.net/benzhujie1245com/article/details/82686973
但是!我改了后显示图片的FIgure会出现未响应的情况
因为只是验证环境,将后两句显示的代码改为:
img = Image.fromarray(image_np, ‘RGB‘)
img.show()虽然有点傻,但是至少可以显示出图片来
Linux:
官方方法:
python object_detection/builders/model_builder_test.py # 结果: # ................ # ---------------------------------------------------------------------- # Ran 16 tests in 0.285s # OK
采用Jupiter Notebook
-
在服务器上下载
Jupiter Notebook
:https://blog.csdn.net/wssywh/article/details/79214569
未试过,待补充
二、准备数据
在配置完成ObjectDetection后,在训练模型前,需要对你要识别的物体数据进行处理。
首先说明文件夹目录:
├─Data
│ ├─test
| | ├─images
│ │ ├─labels
│ │ ├─test.csv
| | └─test.tfrecord
│ └─train
| ├─images
│ ├─labels
│ ├─train.csv
| └─train.tfrecord
| ├─xml2csv.py
| ├─csv2tfrecords.py
数据准备
根据你需要识别的物体,对该物体进行数据的收集。
例如:此次我对人脸进行识别,随意的找了80张图片,作为我此次的训练集(60)和验证集(20)。
为了方便起见,图采集的图像进行重命名,以下为参考代码:
# coding:utf-8 import os import random from PIL import Image ? ? def deleteImages(file_path, file_list): """ 删除图片 """ for fileName in file_list: command = "del " + file_path + "\\\\" + fileName os.system(command) ? ? def change_image_name(file_path, file_list): """ 修改图片名字 """ for index, fileName in enumerate(file_list): if fileName.find(‘.jpg‘) == -1: continue print(index, fileName) newFileName = str(‘%03d‘ % index) + ".jpg" print(newFileName) im = Image.open(file_path + ‘/‘ + fileName) im.save(file_path + ‘/‘ + newFileName) ? ? def main(): # file_path = ‘.\\\\train\\\\images‘ file_path = ‘.\\\\test\\\\images‘ file_list = os.listdir(file_path) random.shuffle(file_list) ? change_image_name(file_path, file_list) deleteImages(file_path, file_list) ? ? if __name__ == ‘__main__‘: main()
数据标注
在寻找完数据后,需要对数据进行标注,标注采用的工具如下:https://github.com/tzutalin/labelImg,根据你自身的环境,按照工具的说明进行操作即可。
我的环境为Anaconda+Windows,因此操作流程为:
# 1.Open the Anaconda Prompt and go to the labelImg directory # 2. conda install pyqt=5 # conda已经带有了,略过 pyrcc5 -o libs/resources.py resources.qrc python labelImg.py python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
labelImage的安装与使用参考链接:https://blog.csdn.net/jesse_mx/article/details/53606897
将标注后生成的xml文件放到相应的train\\labels
或test\\labels
文件夹下
不过此过程及其枯燥且耗时
数据转换
数据转换的步骤为:xml->csv->tfrecords
为什么不直接从xml转换为tfrecords文件:-)
-
xml->csv
代码:
import glob import pandas as pd import xml.etree.ElementTree as ET ? # 需要修改地方:选择训练集train还是测试集test datasets = ‘train‘ csv_path = ‘.\\\\‘ + datasets + ‘\\\\‘ xml_path = ‘.\\\\‘ + datasets + ‘\\\\labels\\\\‘ ? ? def xml_to_csv(path): """将xml转换成csv格式的数据""" xml_list = [] for xml_file in glob.glob(path + ‘*.xml‘): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall(‘object‘): value = (root.find(‘filename‘).text, int(root.find(‘size‘)[0].text), int(root.find(‘size‘)[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = [‘filename‘, ‘width‘, ‘height‘, ‘class‘, ‘xmin‘, ‘ymin‘, ‘xmax‘, ‘ymax‘] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df ? ? def main(): xml_df = xml_to_csv(xml_path) xml_df.to_csv(csv_path + datasets + ‘.csv‘, index=None) print(‘Successfully converted %s\\‘s xml to csv.‘ % datasets) ? ? if __name__ == ‘__main__‘: main()
转换完成后格式如下:
filename,width,height,class,xmin,ymin,xmax,ymax 000,500,333,mouth,265,256,370,315 000,500,333,eye,201,119,276,160 000,500,333,eye,363,114,447,158 000,500,333,face,151,7,498,326
-
csv->tfrecords
代码
import os import io import pandas as pd import tensorflow as tf ? from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple ? # 此时是训练集还是测试集 datasets = ‘train‘ flags = tf.app.flags flags.DEFINE_string(‘csv_input‘, ‘./%s/%s.csv‘ % (datasets, datasets), ‘Path to the CSV input‘) flags.DEFINE_string(‘output_path‘, ‘./%s/%s.tfrecord‘ % (datasets, datasets), ‘Path to output TFRecord‘) flags.DEFINE_string(‘train_or_test‘, ‘%s‘ % datasets, ‘train/test datasets‘) FLAGS = flags.FLAGS ? ? # 这里将label修改成自己的类别 def class_text_to_int(row_label): if row_label == ‘face‘: return 1 if row_label == ‘eye‘: return 2 if row_label == ‘mouth‘: return 3 else: None ? ? def split(df, group): data = namedtuple(‘data‘, [‘filename‘, ‘object‘]) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] ? ? def create_tf_example(group, path): # 根据之前修改图像名字时给图像的命令来修改 with tf.gfile.GFile(os.path.join(path, ‘%03d.jpg‘ % group.filename), ‘rb‘) as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size ? # 根据之前修改图像名字时给图像的命令来修改 filename = (‘%03d.jpg‘ % group.filename).encode(‘utf8‘) image_format = b‘jpg‘ xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] ? for index, row in group.object.iterrows(): xmins.append(row[‘xmin‘] / width) xmaxs.append(row[‘xmax‘] / width) ymins.append(row[‘ymin‘] / height) ymaxs.append(row[‘ymax‘] / height) classes_text.append(row[‘class‘].encode(‘utf8‘)) classes.append(class_text_to_int(row[‘class‘])) ? # 转换为tfrecords需要的格式 tf_example = tf.train.Example(features=tf.train.Features(feature= ‘image/height‘: dataset_util.int64_feature(height), ‘image/width‘: dataset_util.int64_feature(width), ‘image/filename‘: dataset_util.bytes_feature(filename), ‘image/source_id‘: dataset_util.bytes_feature(filename), ‘image/encoded‘: dataset_util.bytes_feature(encoded_jpg), ‘image/format‘: dataset_util.bytes_feature(image_format), ‘image/object/bbox/xmin‘: dataset_util.float_list_feature(xmins), ‘image/object/bbox/xmax‘: dataset_util.float_list_feature(xmaxs), ‘image/object/bbox/ymin‘: dataset_util.float_list_feature(ymins), ‘image/object/bbox/ymax‘: dataset_util.float_list_feature(ymaxs), ‘image/object/class/text‘: dataset_util.bytes_list_feature(classes_text), ‘image/object/class/label‘: dataset_util.int64_list_feature(classes), )) return tf_example ? ? def main(_): writer = tf.python_io.TFRecordWriter(FLAGS.output_path) path = os.path.join(os.getcwd() + ‘\\\\‘ + FLAGS.train_or_test, ‘images‘) examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, ‘filename‘) for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) ? writer.close() print(‘Successfully created the TFRecords: ‘.format(FLAGS.output_path)) ? ? if __name__ == ‘__main__‘: tf.app.run()
三、训练模型
在完成上述两部后,你可以开始真正的训练你想要的模型了。
由于这种训练太消耗电脑资源,因此将此过程放置服务器上进行
出于方便,我在object_detection
目录下新建了training
文件夹,将所有自己添加的文件全部都放置改文件夹下,其目录结构为:
├─data
├─model
│ └─ssd_mobilenet_v1_coco_2018_01_28
│ └─saved_model
│ └─variables
├─output_model
│ └─saved_model
│ └─variables
└─test_image
模型下载
在此处提供了各种各样的可用于目标检测的模型供你下载,先选个最简单的ssd_mobilenet_v1_coco
下载试试看效果;
解压后的目录结构如下:
|─ssd_mobilenet_v1_coco_2018_01_28
│ checkpoint
│ frozen_inference_graph.pb
│ model.ckpt.data-00000-of-00001
│ model.ckpt.index
│ model.ckpt.meta
│ pipeline.config
│
└─saved_model
│ saved_model.pb
│
└─variables
模型配置文件修改
-
在
data
目录下添加文件face_detection.pbtxt
,其中的内容为:item name: "face" id: 1 item name: "eye" id: 2 item name: "mouth" id: 3
这里面的id号和之前在csv中给定的id号需保持一致
-
将模型解压文件夹中的
pipeline.config
,复制到training
目录下 -
进行如下修改:
-
将文件中的所有
PATH_TO_BE_CONFIGURED
修改成为自己的对应的文件夹路径
# 我修改如下: fine_tune_checkpoint: "training/model/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" label_map_path: "training/data/face_detection.pbtxt" input_path: "training/data/train.tfrecord" label_map_path: "training/data/face_detection.pbtxt" input_path: "training/data/test.tfrecord"
出于引用配置文件的
model_main.py
在object_detection
目录下,因此要加上training/
-
-
将
num_classes
,改为你要识别的类别数,此处为3 -
将
eval_config
下的num_examples
修改成你测试集的图片量,此处为20
至此,配置文件已经修改完成。
模型的训练
之前所有的铺垫都是为了此次模型的训练,也终于要开始对模型进行训练了。
-
通过命令
nvidia-smi
查看可利用的空闲的GPU资源; -
通过命令
conda activate tensorflow1.12
激活之前配置的环境; -
进入
models/research/object_detection
文件夹中,为了方便起见,新建train_cmd.sh
; -
用vim编辑
train_cmd.sh
,输入:# train #! /bin/bash CUDA_VISIBLE_DEVICES=1 \\ # 指定gpu资源 python model_main.py \\ # 需要运行的文件 --model_dir=training/model \\ # 训练中生成的模型保存的地方 --pipeline_config_path=training/pipeline.config \\ # 配置文件地址 --num_train_steps=50000 # 训练的步数
-
控制终端中输入
bash train_cmd.sh
,即开始进行训练-
若出现无法找到object_detection模块的问题,则回到
research
目录下,运行如下语句:
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
-
查看训练情况
改文件训练时,并不会输出loss与accuracy的情况,因此需要通过tensorboard进行查看。
在服务器使用tensorboard的方法:https://blog.csdn.net/sinat_35512245/article/details/82960937
进行上述配置后,进入object_detection
文件中,输入命令:
tensorboard --logdir=./training/model --port=6006
之后在本地的浏览器中输入:localhost:12345
即可查看远程的tensorboard
tensorboard查看情况
-
IMAGES:在这里你可以查看你之前转换的数据是否正确,例如此时我的数据如下:
-
GRAPHS:图结构就定义在此处,有毅力有兴趣者可以仔细看看数据时如何处理的,模型是如何架构的,方便后期的调参;
-
SCALARS:此处为训练时的各种参数,例如loss值,learning_rate等参数,以下是经过50000次训练后的结果图:
模型的导出
在完成训练后,我们需要将训练生成的模型进行导出操作,将模型导出成为.pd
的格式,操作流程如下:
-
在
object_detection
目录下新建create_pd.sh
; -
将其中内容修改为:
# use export_inference_graph.py to create .pd file #! /bin/bash CUDA_VISIBLE_DEVICES=1 python export_inference_graph.py --input_type=image_tensor --pipeline_config_path=./training/pipeline.config --trained_checkpoint_prefix=training/model/model.ckpt-50000 --output_directory=./training/output_model
测试效果在win环境下进行,因此将生成的模型文件再导入到windows下
四、训练结果测试
测试环境为本人的win10系统,在object_detection
目录下新建了model_test.py
文件,代码内容如下:
import os import cv2 import sys import numpy as np from PIL import Image import tensorflow as tf ? # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util ? ? # -----------------------------摄像头类定义----------------------------- # class Camera(object): def __init__(self, channel): self.capture = cv2.VideoCapture(channel) ? self.fps = int(self.capture.get(cv2.CAP_PROP_FPS)) self.video_height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.video_width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)) ? self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, self.video_width) self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, self.video_height) self.capture.set(cv2.CAP_PROP_FPS, self.fps) ? def get_image(self): """ 获取图像 """ if self.capture.isOpened(): ret, frame = self.capture.read() if ret is True: print(‘get picture success‘) return frame else: print(‘get picture failed‘) return None ? def release_camera(self): """ 释放摄像机资源 """ self.capture.release() cv2.destroyAllWindows() ? # ------------------------------识别类定义----------------------------- # class SSD_Model(object): def __init__(self, PATH_TO_FROZEN_GRAPH, PATH_TO_LABELS): self.PATH_TO_FROZEN_GRAPH = PATH_TO_FROZEN_GRAPH # 添加需要识别的标签 PATH_TO_LABELS = PATH_TO_LABELS self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) self.detection_graph = self.load_model() ? def load_model(self): # 载入模型文件 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.PATH_TO_FROZEN_GRAPH, ‘rb‘) as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name=‘‘) return detection_graph ? def run_inference_for_single_image(self, image): ‘‘‘ 对单幅图像进行推断 ‘‘‘ graph = self.detection_graph with graph.as_default(): with tf.Session() as sess: # Get handles to input and output tensors ops = tf.get_default_graph().get_operations() all_tensor_names = output.name for op in ops for output in op.outputs tensor_dict = for key in [ ‘num_detections‘, ‘detection_boxes‘, ‘detection_scores‘, ‘detection_classes‘, ‘detection_masks‘]: tensor_name = key + ‘:0‘ if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name( tensor_name) if ‘detection_masks‘ in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze(tensor_dict[‘detection_boxes‘], [0]) detection_masks = tf.squeeze(tensor_dict[‘detection_masks‘], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. real_num_detection = tf.cast(tensor_dict[‘num_detections‘][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[1], image.shape[2]) detection_masks_reframed = tf.cast( tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict[‘detection_masks‘] = tf.expand_dims( detection_masks_reframed, 0) image_tensor = tf.get_default_graph().get_tensor_by_name(‘image_tensor:0‘) ? # Run inference output_dict = sess.run(tensor_dict, feed_dict=image_tensor: image) ? # all outputs are float32 numpy arrays, so convert types as appropriate output_dict[‘num_detections‘] = int(output_dict[‘num_detections‘][0]) output_dict[‘detection_classes‘] = output_dict[ ‘detection_classes‘][0].astype(np.int64) output_dict[‘detection_boxes‘] = output_dict[‘detection_boxes‘][0] output_dict[‘detection_scores‘] = output_dict[‘detection_scores‘][0] if ‘detection_masks‘ in output_dict: output_dict[‘detection_masks‘] = output_dict[‘detection_masks‘][0] return output_dict ? ? def main(): # 开启摄像头 camera = Camera(0) # 输入模型 recognize = SSD_Model(‘./training/output_model/frozen_inference_graph.pb‘, ‘./training/data/face_detection.pbtxt‘) ? while camera.capture.isOpened(): # if True: image = camera.get_image() # image = cv2.imread(‘./training/test_image/007.jpg‘) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = np.array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. output_dict = recognize.run_inference_for_single_image(image_np_expanded) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict[‘detection_boxes‘], output_dict[‘detection_classes‘], output_dict[‘detection_scores‘], recognize.category_index, instance_masks=output_dict.get(‘detection_masks‘), use_normalized_coordinates=True, line_thickness=2) ? cv2.imshow(‘image‘, image_np) cv2.waitKey(20) ? ? if __name__ == "__main__": main() ?
测试结果效果如下,上一张本人的帅照:-)
可见,训练出来的结果是有效果的:-)
五、总结
-
首先感谢Google,封装了那么健全的库,能大大缩减开发的时间,提高开发的效率;
-
本次训练采用了应该是最为基础的模型,后续会尝试更多的模型,比较不同模型之间的效果;
-
对于训练的参数为做修改,例如学习率、优化方式等,后续会继续努力理解代码,进行修改来达到更好的效果;
参考:
https://blog.csdn.net/dy_guox/article/details/79111949
https://blog.csdn.net/Orienfish/article/details/81199911
https://blog.csdn.net/exploer_try/article/details/81434985
以上是关于Google Object detection配置与使用的主要内容,如果未能解决你的问题,请参考以下文章
ImportError:colab google中没有名为object_detection.builders的模块
报错google.protobuf.text_format.ParseError: 166:8 : Message type "object_detection.protos.RandomH
配置tensorflow object detection api
windows配置tensorflow python object detection 环境