Noip 模拟练习8

Posted bigyellowdog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Noip 模拟练习8相关的知识,希望对你有一定的参考价值。

Noip 模拟练习8

  • 全是紫题黑题。
  • 先只挂上题面,咕咕咕

兔农

Description

  • 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到隔壁的小朋友在讨论兔子繁殖的问题。

    问题是这样的:第一个月初有一对刚出生的小兔子,经过两个月长大后,这对兔子从第三个月开始,每个月初生一对小兔子。新出生的小兔子生长两个月后又能每个月生出一对小兔子。问第n个月有多少只兔子?

    聪明的你可能已经发现,第n个月的兔子数正好是第n个Fibonacci(斐波那契)数。栋栋不懂什么是Fibonacci数,但他也发现了规律:第i+2个月的兔子数等于第i个月的兔子数加上第i+1个月的兔子数。前几个月的兔子数依次为:

    1 1 2 3 5 8 13 21 34 …

    栋栋发现越到后面兔子数增长的越快,期待养兔子一定能赚大钱,于是栋栋在第一个月初买了一对小兔子开始饲养。

    每天,栋栋都要给兔子们喂食,兔子们吃食时非常特别,总是每k对兔子围成一圈,最后剩下的不足k对的围成一圈,由于兔子特别害怕孤独,从第三个月开始,如果吃食时围成某一个圈的只有一对兔子,这对兔子就会很快死掉。

    我们假设死去的总是刚出生的兔子,那么每个月的兔子数仍然是可以计算的。例如,当k=7时,前几个月的兔子数依次为:

    1 1 2 3 5 7 12 19 31 49 80 …

    给定n,你能帮助栋栋计算第n个月他有多少对兔子么?由于答案可能非常大,你只需要告诉栋栋第n个月的兔子对数除p的余数即可。

Input

  • 输入一行,包含三个正整数n, k, p。

Output

  • 输出一行,包含一个整数,表示栋栋第n个月的兔子对数除p的余数。

Sample Input

6 7 100

Sample output

7

Data Size

  • 1<=n<=10^18

    2<=k<=10^6

    2<=p<=10^9

特别行动队

Description

  • 你有一支由n名预备役士兵组成的部队,士兵从1到n编号,要将他们拆分成若干特别行动队调入战场。出于默契考虑,同一支特别行动队中队员的编号应该连续,即为形如(i,i+1,…,i+k)的序列。
      编号为i的士兵的初始战斗力为xi,一支特别运动队的初始战斗力x为队内士兵初始战斗力之和,即x=(xi)+(xi+1)+…+(xi+k)。
      通过长期的观察,你总结出一支特别行动队的初始战斗力x将按如下经验公式修正为x’:x’=ax^2+bx+c,其中a,b,c是已知的系数(a<0)。
      作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后战斗力之和最大。试求出这个最大和。
      例如,你有4名士兵,x1=2,x2=2,x3=3,x4=4。经验公式中的参数为a=-1,b=10,c=-20。此时,最佳方案是将士兵组成3个特别行动队:第一队包含士兵1和士兵2,第二队包含士兵3,第三队包含士兵4。特别行动队的初始战斗力分别为4,3,4,修正后的战斗力分别为4,1,4。修正后的战斗力和为9,没有其它方案能使修正后的战斗力和更大。

Input

  • 输入由三行组成。第一行包含一个整数n,表示士兵的总数。第二行包含三个整数a,b,c,经验公式中各项的系数。第三行包含n个用空格分隔的整数x1,x2,…,xn,分别表示编号为1,2,…,n的士兵的初始战斗力。

Output

  • 输出一个整数,表示所有特别行动队修正战斗力之和的最大值。

Sample Input

4 
-1 10 -20 
2 2 3 4 

Sample output

9

巡逻

题目:

以上是关于Noip 模拟练习8的主要内容,如果未能解决你的问题,请参考以下文章

Noip 模拟练习9

NOIP2017练习跳跃切除子序列(模拟)

NOIP 考前 计算几何练习

8.20noip模拟题

8.19noip模拟题

NOIP模拟17.8.17