基于RGB颜色模型的图像提取与二值化

Posted kensporger

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于RGB颜色模型的图像提取与二值化相关的知识,希望对你有一定的参考价值。

  现实中我们要处理的往往是RGB彩色图像。对其主要通过HSI转换、分量色差等技术来提出目标。

 

RGB分量灰度化:

  RGB可以分为R、G、B三分量。当R=G=B即为灰度图像,很多时候为了方便,会直接利用某个分量来进行灰度化,如下图所示:

技术图片

    上图中R分量下红色部分明显比其他两幅更偏白;同样地G分量草地较淡,B分量天空较淡。其他部分如灰黑色马路则相差不多。实际中,我们可以根据

  需求有选择地选择分量。

 

RGB分量差灰度化:

  有时候我们的要求是从图像中提取某种颜色区域,那么最简单的方法就是采用RGB色差。

  例如在花束中提取红色的花瓣,就可以采用R-G分量差(目标为红色,干扰为G分量),或者,在土壤表面提取绿色秧苗,可以采用G-R-B分量差(G占2份,土壤可能

  存在R,B分量干扰),下图为提取结果:

  技术图片

  如果遇到更复杂的情况,可以根据目标颜色与干扰颜色设计合适的分量差。

  

 

HSI分量灰度化:

    H、S、I分别表示色调、饱和度、明度。色调指日常所说的颜色(红,白,黑等),饱和度则表示颜色的鲜艳程度,值越大越鲜艳,明度则是颜色的明亮

  程度。这三种属性可以用两个椎体表示,其中明度是竖直中心轴,在竖直方向上,明度不同;每个明度对应一个横截面,用极坐标表示H,S,H为角度,S为模长。

  HSI模型如图所示:

  技术图片

 

  我们可以将RGB转为HSI,相关公式有很多种,各有特点,下面介绍其中一种:

    rgb_min=min(r,g,b)

    rgb_max=max(r,g,b)

    I=rgb_max

    S=(rgb_max-rgb_min)/rgb_max

    if r==rgb_max

      H=abs(g-b)/(rgb_max-rgb_min)/3

    if g==rgb_max

      H=1/3+abs(r-b)/(rgb_max-rgb_min)/3

    if  b==rgb_max

 

      H=2/3+abs(r-g)/(rgb_max-rgb_min)/3

 

  如此计算所得的H范围为[0,1),S范围为[0,1),I范围[0,255]。HSI分量灰度图如下:

  技术图片

  明度分量与一般灰度化效果差不多(可能灰度化可能是基于明度的),有时候利用饱和度与色调灰度号的图像进行提取会便利很多,如下图是基于饱和度的二值提取

  (一般如果要基于颜色提取的化采用RGB分量色差比较好,毕竟如果要获取较精准的饱和度信息,所用公式会比上面的复杂):

  技术图片

  由于背景的饱和度较低,而目标饱和度高,而且目标由多种颜色组成,这样如果直接基于明度的灰度化不可能提取到整个花束,而通过饱和度提取的效果就非常棒。

  另外,也可以将HSI组合起来使用,使得特征更明显,例如可以用饱和度与色调消除红眼现象,具体基于HSI的算法这里就不探究了!

 

 

 

   

  

以上是关于基于RGB颜色模型的图像提取与二值化的主要内容,如果未能解决你的问题,请参考以下文章

图像中颜色的二值化

图像验证码识别——灰度化和二值化

图像的二值化处理的阈值是指啥?求vc下的代码实现!?

OpenCV - 图像二值化处理 腐蚀膨胀 边缘检测 轮廓识别

OpenCV python图像预处理:二值化 && 滤波操作

RGB颜色二值化