10.2模拟赛总结
Posted spbv587
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了10.2模拟赛总结相关的知识,希望对你有一定的参考价值。
10.2 模拟赛总结
T1.
数位dp:
一个非常非常非常非常显然的数位 DP
\\([L,R] = [1,R]-[1,L-1]\\)
所以是分别求两次小于等于某个数字的方案数
\\(f(i,j,k)\\) 表示从低位数起的第 \\(i\\) 位,按照规则计算后答案为 \\(j\\quad (j=0,1)\\)
\\(k\\) 表示只考虑后面结尾和 \\(lmt\\)后面几位 的大小关系 \\((k=0,1)\\)
考虑第 \\(i+1\\) 位,算一下新构成的数字并判断下大小就可以了
注意到 \\(L,R\\) 数据范围特别大,需要用高精度,最后结果要以二进制输出,所以可以对高精度压位
(以上扒的题解)
这题是个正常人就会想到找规律:
然后就有打表:(1~100)
然后就没了(啥?还有高精呢)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define LL long long
using namespace std;
int n, q, v, t, L, R, len;
char s[208];
struct bigint
int len, zz;
int v[1005];
bigint()len = 0; memset(v, 0, sizeof v); zz = 1;
bigint(int x)
if(x >= 0) zz = 1;
else x = -x, zz = 0;
len = 0;
memset(v, 0, sizeof v);
while(x)
v[ ++len] = x % 10;
x /= 10;
friend bool operator < (const bigint &a, const bigint &b)
if(a.len < b.len) return 1;
if(a.len > b.len) return 0;
for(int i = a.len ; i >= 1; i -- )
if(a.v[i] < b.v[i]) return 1;
if(a.v[i] > b.v[i]) return 0;
return 0;
friend bool operator == (const bigint &a, const bigint &b)
if(a.len != b.len ) return 0;
for(int i = a.len; i >= 1; i --)
if(a.v[i] != b.v[i]) return 0;
return 1;
friend bool operator <= (const bigint &a, const bigint &b)
if(a < b) return 1;
else if(a == b) return 1;
else return 0;
friend bool operator != (const bigint &a, const bigint &b)
if(a.len != b.len) return 1;
for(int i = a.len; i >= 1; i --)
if(a.v[i] != b.v[i]) return 1;
return 0;
x, y, res;
bigint operator + (bigint a, bigint b)
int len = a.len + b.len;
bigint c;
c.len = len;
for(int i = 1; i <= len; i ++)
c.v[i] = a.v[i] + b.v[i];
for(int i = 1; i <= len; i ++)
if(c.v[i] >= 10)
++c.v[i+1];
c.v[i] -= 10;
while(c.len&&!c.v[c.len]) c.len --;
return c;
bigint operator - (bigint a, bigint b)
int len = max(a.len, b.len);
bigint c;
for(int i = 1; i <= len; i ++)
c.v[i] = a.v[i] - b.v[i];
c.len = len;
for(int i = 1; i <= c.len; i ++)
if(c.v[i] < 0)
c.v[i+1]--;
c.v[i] += 10;
while(c.len&&!c.v[c.len]) c.len --;
return c;
bigint operator *(bigint a,bigint b)
bigint c;
for(int i = 1; i <= a.len; ++ i)
for(int j = 1; j <= b.len; ++ j)
c.v[i+j-1] += a.v[i] * b.v[j];
c.len = a.len + b.len;
for(int i = 1; i <= c.len - 1; ++ i)
if(c.v[i] >= 10)
c.v[i+1] += c.v[i] / 10;
c.v[i] %= 10;
while(c.v[c.len] == 0&&c.len > 1) -- c.len;
return c;
bigint operator /(bigint a,long long b)
bigint c;int d = 0;
for(int i = a.len; i >= 1; -- i)
c.v[++ c.len] = ((d * 10 + a.v[i]) / b),d=(d*10+a.v[i])%b;
for(int i=1;i<=c.len/2;++i)swap(c.v[i],c.v[c.len-i+1]);
while(c.v[c.len]==0&&c.len>1)--c.len;
return c;
bigint Min(bigint a, bigint b)
if(a < b) return a;
else return b;
bigint work(bigint x)
if(x < bigint(4)) return bigint(1);
bigint l = bigint(4), r = Min(x, bigint(7)), res = bigint(1);
int opt = 1;
for(; ; l = r + bigint(1), r = Min(r * bigint(2) + bigint(1), x), opt ^= 1 )
if(opt)
res = res + (r - l + bigint(1));
if(r == x) break;
return res;
void out(bigint x)
if(!x.len) return (void)printf("0");
bigint qwq = bigint(1);
while(qwq <= x) qwq = qwq * bigint(2);
qwq = qwq / 2;
for(; ; qwq = qwq /2)
if(qwq <= x)
printf("1");
x = x - qwq;
else printf("0");
if(qwq == bigint(1))break;
void solve()
x = y = res = bigint(0);
scanf("%s", s + 1);
for(int i = 1; i <= n; i ++)
x = x * 2 + bigint(s[i] - '0');
scanf("%s", s + 1);
for(int i = 1; i <= n; i ++)
y = y * 2 + bigint(s[i] - '0');
res = work(y) - work(x - bigint(1));
if((n&1) == (q&1)) res = y - x + 1 - res;
out(res);
puts("");
signed main()
// freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
scanf("%d", &t);
while(t --)
scanf("%d%d",&n, &q);
solve();
return 0;
T2
一sb题, 没啥总结的。。
。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define LL long long
#define N 100005
using namespace std;
struct node
int w1, w2, l1, l2;
q[N];
int n, m, t, minw = 2e9, maxw = -233, minl = 2e9, maxl = -233, flag;
signed main()
freopen("b.in", "r",stdin);
freopen("b.out", "w", stdout);
scanf("%d", &t);
while(t -- )
flag = 0; minw = minl = 2e9; maxw = maxl = -233;
scanf("%d", &n);
for(int i = 1; i <= n; i ++)
scanf("%d%d%d%d", &q[i].w1, &q[i].w2, &q[i].l1, &q[i].l2);
for(int i = 1; i <= n; i ++)
minw = min(minw, q[i].w1);
maxw = max(maxw, q[i].w2);
minl = min(minl, q[i].l1);
maxl = max(maxl, q[i].l2);
for(int i = 1; i <= n; i ++)
if(q[i].w1 <= minw&&q[i].w2 >= maxw&&q[i].l1 <= minl&&q[i].l2 >= maxl)
flag = 1; break;
if(flag)printf("TAK\\n");
else printf("NIE\\n");
return 0;
T3
毒瘤数据结构+数论题
--给定1, n, d, v 给序列所有满足\\(gcd(x, n)=d\\)的\\(x\\), 给\\(a[x]+=v\\);
就相当于\\(a[x]+=v[gcd(x, n)==d]\\)
然后就可以愉快的推式子了
\\(\\ \\ \\ \\ v[\\gcd(x,n) = d]\\)
$ = v [\\gcd(\\fracxd,\\fracnd)=1]$
$ = v\\sum\\limits_k|\\gcd(\\fracxd,\\fracnd) \\mu(k)$ (日常反演)
$ = v\\sum\\limits_k|\\fracxd,k|\\fracnd \\mu(k)$
\\(=\\sum\\limits_k|\\fracnd,kd|x v\\mu(k)\\)
暴力做法显然是要枚举\\(x\\), 对于每一个\\(k|\\fracnd且kd|x\\), 都加上\\(v\\mu(k)\\),
可以等价于
对于一个合法的\\(k|\\dfracnd\\), 则\\(x =kd,2kd,3kd...\\), 枚举\\(k\\), 把所有\\(kd\\), 的倍数都加上\\(v\\mu(k)\\);
这样虽然\\(O(1)\\)查询, 但修改的复杂度太大
考虑均摊复杂度
我们开一个数组\\(f\\) 表示所有是\\(i\\), 的倍数的位置都加上\\(f[i]\\)
修改时只需找出合法的\\(k\\), 然后\\(f[kd]+=v\\mu(k)\\), 省去了枚举\\(kd\\) 的倍数;
然后查询时 查询一个数\\(i\\) 时, 就成了\\(\\sum_d|if(d)\\)
则\\(x\\), 的前缀和就是
\\(\\sum\\limits_i=1^x\\sum\\limits_d|i f(d)=\\sum\\limits_d=1^x f(d)\\lfloor \\fracxd\\rfloor\\)
然后就可以整除分块, 对与每一块需要求出那一块的\\(f\\)的和;单点修改区间求和树状数组可以维护;
时间复杂度$O(q\\sqrtl\\log l+ l \\log l) $
可以撒花了
然后这个柿子的理解
\\(\\sum\\limits_i=1^x\\sum\\limits_d|i1=\\sum\\limits_d=1^x\\lfloor\\fracxd\\rfloor\\)
1到x每一个数的所有约数的个数
就相当于枚举一个约数, 这个约数的倍数的个数, x以内d的倍数的个数就是\\(\\lfloor\\fracxd\\rfloor\\);
以上是关于10.2模拟赛总结的主要内容,如果未能解决你的问题,请参考以下文章
Xcode 10.2 无法在 iOS < 10 的模拟器上运行应用程序
无法在 iOS 模拟器 10.2 或 10.3 中切换软件键盘
csp-s模拟测试57(10.2)「天空龙」·「巨神兵」·「太阳神」