Binary-Search

Posted angiebare

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Binary-Search相关的知识,希望对你有一定的参考价值。

输入:一个已经排好序的待搜索数组array_to_search,需要查找的数number,查找边界left、right。

输出:number在array_to_search中的位置,若未找到,输出-1。

实现思路

  1. 将数组的中间元素array_to_search[middle]与待查找数number进行比较,如果相等,则成功找到,结束;
  2. 若array_to_search[middle] > number,则number只可能出现在array_to_search的前半段,放弃对后半段的查找,查找规模减半,回到步骤1;
  3. 若array_to_search[middle] < number,则number只可能出现在array_to_search的后半段,放弃对前半段的查找,查找规模减半,回到步骤1;
  4. 若查找规模 = 1时仍然没有查找到number,则待查找数组中没有number,结束。

两个例子

查找成功

输入:array_to_search = [1, 7, 12, 16, 24, 28, 34, 39],number = 34, left = 0, right = 7

  1. middle = (0 + 7) // 2 = 3,array_to_search[middle ] = 16, 小于number,array_to_search变成如下状态:

    [1, 7, 12, 16, 24, 28, 34, 39]
  2. middle = (4 + 7) // 2 = 5,array_to_search[middle ] = 28,小于number,array_to_search变成如下状态:

    [1, 7, 12, 16, 24, 28, 34, 39]
  3. middle = (6 + 7) // 2 = 6, array_to_search[middle ] = 34,等于number,算法结束

查找失败

输入:array_to_search = [1, 7, 12, 16, 24, 28, 34, 39],number = 3, left = 0, right = 7

  1. middle = (0 + 7) // 2 = 3,array_to_search[middle ] = 16, 大于number,array_to_search变成如下状态:

    [1, 7, 12, 16, 24, 28, 34, 39]
  2. middle = (0 + 2) // 2 = 1,array_to_search[middle ] = 7,大于number,array_to_search变成如下状态:

    [1, 7, 12, 16, 24, 28, 34, 39]
  3. middle = (0 + 0) // 2 = 0,array_to_search[middle ] = 1,小于number,由于问题规模已经为1,算法结束,查找失败。

流程图

技术图片

二分查找完整算法(Python实现)

from random import uniform

def binary_search(array_to_search, number, left, right):
    index = -1
    while(left <= right):
        middle = (left + right) // 2
        if array_to_search[middle] == number:
            index = middle
            break
        elif array_to_search[middle] > number:
            right = middle - 1
        else:
            left = middle + 1
    return index

if __name__ == '__main__':
    array_size = int(input("Please input the length of array:"))
    array_to_search = [int(uniform(0, 5)) + 5 * i for i in range (0, array_size)]
    print("Init array:", array_to_search)
    number = int(input("Please input the number you want to search:"))
    
    # start search
    print("\n\n")
    print("######################")
    print("## Start searching! ##")
    print("######################")
    print("")
    
    print("Binary Search:", binary_search(array_to_search, number, 0, len(array_to_search)))

时间复杂度

对于一个长度为n的数组,每次与中间元素进行比较后规模都将缩小为原来的\(\frac12\),因此经过\(\log_2n\)次比较后,规模将会缩小为1,因此二分查找的时间复杂度为\(O(\log_2n)\)

OJ(LeetCode 852.山脉数组的峰值索引)

我们把符合下列属性的数组A称作山脉:

  • A.length >=3
  • 存在0 < i < A.length - 1使得A[0] < A[1] < ... < A[i - 1] < A[i] > A[i + 1] > ... > A[A.length - 1]

给定一个确定为山脉的数组,返回任何满足任何满足A[0] < A[1] < ... < A[i - 1] < A[i] > A[i + 1] > ... > A[A.length - 1]的i的值。

按照算法的标准可以描述成如下形式:

输入:一个符合A[0] < A[1] < ... < A[i - 1] < A[i] > A[i + 1] > ... > A[A.length - 1]的数组A。

输出:i。

一种朴素的想法是遍历数组,当某一个i使得A[i - 1] < A[i]并且A[i] > A[i + 1],则i即为所求。显然这种方法的时间复杂度为\(O(n)\)

我们可以采用二分查找的思想,每次取查找范围最中间的数A[mid],观察A[mid - 1]、A[mid]、A[mid + 1]三者的关系,如果A[mid - 1] < A[mid] && A[mid] > A[mid + 1],则mid为山峰的索引;若A[mid - 1] < A[mid] && A[mid] < A[mid + 1],证明还在上坡过程,mid在山峰的左边,查找范围缩小到[mid + 1, right];否则则为下坡过程,mid在山峰的右边,查找范围缩小到[left, mid - 1]。这种方法的时间复杂度为\(O(log_2n)\)

山脉数组的峰值索引完整算法(C++实现)

class Solution 
public:
    int peakIndexInMountainArray(vector<int>& A) 
        int length = A.size();
        int left = 0, rigth = length - 1;
        int mid = 0, current = 0;

        while(left <= rigth)
        
            mid = (left + rigth) / 2;
            if(A[mid - 1] < A[mid] && A[mid] > A[mid + 1])
            
                break;
            
            else if(A[mid - 1] < A[mid] && A[mid] < A[mid + 1])
            
                left = mid + 1;
            
            else
            
                rigth = mid - 1;
            
        
        return mid;
    
;

以上是关于Binary-Search的主要内容,如果未能解决你的问题,请参考以下文章