BP神经网络及异或实现

Posted thsss

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BP神经网络及异或实现相关的知识,希望对你有一定的参考价值。

BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。

技术图片

 

 

难点:

  1. 如何确定初始化参数?
  2. 如何确定隐含层节点数量?
  3. 迭代多少次?如何更快收敛?
  4. 如何获得全局最优解?
  1 ‘‘‘
  2 neural networks 
  3 
  4 created on 2019.9.24
  5 author: vince
  6 ‘‘‘
  7 import math
  8 import logging
  9 import numpy  
 10 import random
 11 import matplotlib.pyplot as plt
 12 
 13 ‘‘‘
 14 neural network 
 15 ‘‘‘
 16 class NeuralNetwork:
 17 
 18     def __init__(self, layer_nums, iter_num = 10000, batch_size = 1):
 19         self.__ILI = 0;
 20         self.__HLI = 1;
 21         self.__OLI = 2;
 22         self.__TLN = 3;
 23 
 24         if len(layer_nums) != self.__TLN:
 25             raise Exception("layer_nums length must be 3");
 26 
 27         self.__layer_nums = layer_nums;  #array [layer0_num, layer1_num ...layerN_num]
 28         self.__iter_num = iter_num;
 29         self.__batch_size = batch_size;
 30     
 31     def train(self, X, Y):
 32         X = numpy.array(X);
 33         Y = numpy.array(Y);
 34 
 35         self.L = [];
 36         #initialize parameters
 37         self.__weight = [];
 38         self.__bias = [];
 39         self.__step_len = [];
 40         for layer_index in range(1, self.__TLN):
 41             self.__weight.append(numpy.random.rand(self.__layer_nums[layer_index - 1], self.__layer_nums[layer_index]) * 2 - 1.0);
 42             self.__bias.append(numpy.random.rand(self.__layer_nums[layer_index]) * 2 - 1.0);
 43             self.__step_len.append(0.3);
 44 
 45         logging.info("bias:%s" % (self.__bias));
 46         logging.info("weight:%s" % (self.__weight));
 47 
 48         for iter_index in range(self.__iter_num):
 49             sample_index = random.randint(0, len(X) - 1);
 50             logging.debug("-----round:%s, select sample %s-----" % (iter_index, sample_index));
 51             output = self.forward_pass(X[sample_index]);
 52             g = (-output[2] + Y[sample_index]) * self.activation_drive(output[2]);
 53             logging.debug("g:%s" % (g));
 54             for j in range(len(output[1])):
 55                 self.__weight[1][j] += self.__step_len[1] * g * output[1][j];
 56             self.__bias[1] -= self.__step_len[1] * g;
 57 
 58             e = [];
 59             for i in range(self.__layer_nums[self.__HLI]):
 60                 e.append(numpy.dot(g, self.__weight[1][i]) * self.activation_drive(output[1][i]));
 61             e = numpy.array(e);
 62             logging.debug("e:%s" % (e));
 63             for j in range(len(output[0])):
 64                 self.__weight[0][j] += self.__step_len[0]  * e * output[0][j];
 65             self.__bias[0] -= self.__step_len[0] * e;
 66 
 67             l = 0;
 68             for i in range(len(X)):
 69                 predictions = self.forward_pass(X[i])[2];
 70                 l += 0.5 * numpy.sum((predictions - Y[i]) ** 2);
 71             l /= len(X);
 72             self.L.append(l);
 73 
 74             logging.debug("bias:%s" % (self.__bias));
 75             logging.debug("weight:%s" % (self.__weight));
 76             logging.debug("loss:%s" % (l));
 77         logging.info("bias:%s" % (self.__bias));
 78         logging.info("weight:%s" % (self.__weight));
 79         logging.info("L:%s" % (self.L));
 80     
 81     def activation(self, z):
 82         return (1.0 / (1.0 + numpy.exp(-z)));
 83 
 84     def activation_drive(self, y):
 85         return y * (1.0 - y);
 86 
 87     def forward_pass(self, x):
 88         data = numpy.copy(x);
 89         result = [];
 90         result.append(data);
 91         for layer_index in range(self.__TLN - 1):
 92             data = self.activation(numpy.dot(data, self.__weight[layer_index]) - self.__bias[layer_index]);
 93             result.append(data);
 94         return numpy.array(result);
 95 
 96     def predict(self, x):
 97         return self.forward_pass(x)[self.__OLI];
 98 
 99 
100 def main():
101     logging.basicConfig(level = logging.INFO,
102             format = %(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s,
103             datefmt = %a, %d %b %Y %H:%M:%S);
104             
105     logging.info("trainning begin.");
106     nn = NeuralNetwork([2, 2, 1]);
107     X = numpy.array([[0, 0], [1, 0], [1, 1], [0, 1]]);
108     Y = numpy.array([0, 1, 0, 1]);
109     nn.train(X, Y);
110 
111     logging.info("trainning end. predict begin.");
112     for x in X:
113         print(x, nn.predict(x));
114 
115     plt.plot(nn.L)
116     plt.show();
117 
118 if __name__ == "__main__":
119     main();

 具体收敛效果技术图片

以上是关于BP神经网络及异或实现的主要内容,如果未能解决你的问题,请参考以下文章

机器学习基础使用python实现BP算法

神经网络BP算法解决XOR异或问题MATLAB版

神经网络——BP算法

数学建模MATLAB应用实战系列(106)-机器学习算法:BP神经网络(附MATLAB代码)

OpenCv 神经网络记录

BP预测基于遗传算法改进BP神经网络实现数据预测