Series序列

Posted liuhuacai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Series序列相关的知识,希望对你有一定的参考价值。

import pandas as pd

‘‘‘
Series序列:
1.序列 的声明,指定index列标签
2.查看列索引(index)和元素 (values)
3.选择内部元素
4.为元素赋值
5.用Numpy数组定义新Series对象
6.筛选元素
7.Series对象运算和数学函数
8.Series组成元素(重复,是否存在)
9.NaN
10.Series用做字典
‘‘‘
技术图片
###  1.声明Series,并指定索引(没指定:索引从0开始自动递增)
series_define = pd.Series([2,3,3,4,6,8],index=[a,b,c,d,e,f])
print(series_define)
‘‘‘
a    2
b    3
c    3
d    4
e    6
f    8
dtype: int64
‘‘‘
Series序列声明,指定索引index=
技术图片
###  2.查看Series序列的索引和元素【返回两个数组】
series_index = series_define.index
series_value = series_define.values
print(series_index)
print(series_value)
‘‘‘
Index([‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘], dtype=‘object‘)
[2 3 3 4 6 8]
‘‘‘
查看Series序列的索引和元素【.index .values返回两个数组】
技术图片
###  3.选择内部元素:切片或指定标签
print(series_define[-1])
print(series_define[4:-1])
print(series_define[f])
print(series_define[[e,f]])   ###通过标签取多个值时,要把标签放在数组中
选择内部元素:切片或指定标签
技术图片
###  4.为元素赋值:选取元素 = 赋值
series_define[0] = 66
series_define[b] = 77
print(series_define)
‘‘‘
a    66              
b    77
c     3
d     4
e     6
f     8
dtype: int64
‘‘‘
为元素赋值:选取元素 = 赋值
技术图片
###  5.现有数组生成Series
arr = np.array([1,2,3,4])
s = pd.Series(arr)
print(s)
‘‘‘
0    1
1    2
2    3
3    4
dtype: int32
‘‘‘
现有数组生成Series
技术图片
###  6.筛选元素:获取大于3的元素 s[s>3]
print(s[s>3])
筛选元素:获取大于3的元素 s[s>3]
技术图片
###  7.适用于Numpy数组的运算符(+ - * /) 和 np.log()等数学函数都适用
#相除
s1 = series_define/2
print(s1)
‘‘‘
a    33.0
b    38.5
c     1.5
d     2.0
e     3.0
f     4.0
dtype: float64
‘‘‘
#取对
s2 = np.log(series_define)
print(s2)
‘‘‘
a    4.189655
b    4.343805
c    1.098612
d    1.386294
e    1.791759
f    2.079442
dtype: float64
‘‘‘
Series:数学函数np.log(s)运算
技术图片
##  8.重复次数和判断是否存在
#  .unique()去重(不重复的元素,返回value数组)
s_a = pd.Series([1,1,1,1,2,2,2,3])
a = s_a.unique()
print(a)
‘‘‘
[1 2 3]
‘‘‘
#  .value_counts()  返回去重后的元素,并且统计出现的次数:返回Series,出现个数作为值
b = s_a.value_counts()
print(b)
print(b[1])

# .isin()判断是否存在(返回布尔值)
c = s_a.isin([2,3])
print(c)
c1 = s_a[s_a.isin([2,3])]
print(c)
print(c1)
‘‘‘
0    False
1    False
2    False
3    False
4     True
5     True
6     True
7     True
dtype: bool
0    False
1    False
2    False
3    False
4     True
5     True
6     True
7     True
dtype: bool
4    2
5    2
6    2
7    3
dtype: int64

‘‘‘
重复次数和判断是否存在

 

以上是关于Series序列的主要内容,如果未能解决你的问题,请参考以下文章

R绘制时间序列图形(time series)

R语言时间序列(time series)分析实战:使用ARIMA模型预测时间序列

R语言时间序列(time series)分析实战:时序数据加载绘制时间序列图

时间序列预测时间序列分解(Time series decomposition)

R语言时间序列(time series)分析实战:简单指数平滑法预测

R语言时间序列(time series)分析实战:HoltWinters平滑法预测