Calibration_3D学习

Posted AL_meno

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Calibration_3D学习相关的知识,希望对你有一定的参考价值。

*
* Initialize the program
dev_close_window ()    //关闭图形窗口
dev_open_window (0, 0, 768, 576, ‘black‘, WindowHandle)   //打开一个原点在(0,0)的宽为768,高为576,背景为黑色的图形窗口;
dev_update_off ()
dev_set_draw (‘margin‘)   //定义区域的填充模式,margin显示边缘,fill填充全部区域

dev_set_line_width (3)     //定义线宽为3
set_display_font (WindowHandle, 14, ‘mono‘, ‘true‘, ‘false‘) //设置显示字体(窗口句柄,字体大小,字体,是否加粗,是否斜体)

*
* Calibrate the camera
*
CalTabDescrFile := ‘caltab_big.descr‘   //标定板描述文件
StartCamPar := [0.008,0,0.0000086,0.0000086,384,288,768,576] //相机参数(焦距,畸变,像素尺寸宽,像素尺寸高,中心点坐标宽,中心点坐标高,图片宽,图片高)
create_calib_data (‘calibration_object‘, 1, 1, CalibDataID)  //创建标定数据模型,即标定的数据将存放于CalibDataID中。
set_calib_data_cam_param (CalibDataID, 0, ‘area_scan_division‘, StartCamPar) //设定相机的初始化参数(标定数据模型句柄,相机索引,相机类型,相机参数)
set_calib_data_calib_object (CalibDataID, 0, CalTabDescrFile) //在标定模型中设定标定对象(对象句柄,标定对象索引,3D标定板文件名)
NumImages := 10
for I := 1 to NumImages by 1
    read_image (Image, ‘calib/calib-3d-coord-‘ + I$‘02d‘) //读取图像(输出对象,文件名)
    dev_display (Image)//显示图片,类似matlab中的imshow
    Message := ‘Find calibration plate in\nall calibration images (‘ + I + ‘/‘ + NumImages + ‘)‘//
    disp_message (WindowHandle, Message, ‘window‘, 12, 12, ‘black‘, ‘true‘)//显示消息(窗口句柄,要显示的字符,当前的坐标系统,窗口显示的起始坐标,字体颜色,是否要显示白色底纹)
    * Find the calibration plate
    find_calib_object (Image, CalibDataID, 0, 0, I - 1, [], [])//(输入图像,标定数据模型句柄,相机索引,标定对象索引,标定对象位置索引,通用参数名称,通用参数值)
    get_calib_data (CalibDataID, ‘camera‘, 0, ‘init_params‘, StartCamPar)//获取标定数据(标定数据模型句柄,标定数据项的类型,影响项目索引,查询数据名称,响应数据)(依靠索引号和数据名称来返回输出的数据值。可查询与模型相关的数据,与相机相关的数据(包括相机的内外参数),与标定对象相关的数据,与标定对象的姿态相关的数据。控制输出是要查询的标定数据)
    get_calib_data_observ_points (CalibDataID, 0, 0, I - 1, Row, Column, Index, Pose)//获取观察点数据(标定数据模型句柄,相机索引,标定对象索引,位姿索引,检测点行号,检测点列号,检测点对应到标定对象观察点索引,粗略的位姿数据(相对相机))
    get_calib_data_observ_contours (Contours, CalibDataID, ‘caltab‘, 0, 0, I - 1)//获取校准数据轮廓(输出轮廓,标定数据模型句柄,轮廓名,相机索引,标定对象索引,位姿索引)
    gen_cross_contour_xld (Cross, Row, Column, 6, 0.785398)//为每个输入点生成一个十字形(生成XLD轮廓,输入点集行号,输入点集列号,十字形长度,十字形方向)
    dev_set_color (‘green‘)//用于定义显示区域颜色,这个设置到下一个dev_set_color才会被改变;
    dev_display (Contours)//显示对象
    dev_set_color (‘yellow‘)//
    dev_display (Cross)//
stop()
endfor
disp_continue_message (WindowHandle, ‘black‘, ‘true‘)// 等待用户操作是否继续
stop ()
calibrate_cameras (CalibDataID, Error)// 通过最小化过程确定相机的参数
get_calib_data (CalibDataID, ‘camera‘, 0, ‘params‘, CamParam)//
*
* Perform measurements
*
for I := 1 to NumImages by 1
    read_image (Image, ‘calib/calib-3d-coord-‘ + I$‘02d‘) //
    *
    * Now, measure the size of the black border of the plate
    get_measure_positions (Image, PlateRegion, CalibDataID, I, Distance, Phi, RowCenter, ColumnCenter)//
    gen_rectangle2_contour_xld (Rectangle, RowCenter, ColumnCenter, Phi, Distance * 0.52, 8)//
    gen_measure_rectangle2 (RowCenter, ColumnCenter, Phi, Distance * 0.52, 8, 768, 576, ‘nearest_neighbor‘, MeasureHandle)//产生测量句柄,准备提取和矩形主轴垂直的直边缘
    *
    measure_pos (Image, MeasureHandle, 1, 40, ‘all‘, ‘all‘, RowEdge, ColumnEdge, Amplitude, Distance1)//提取和矩形或弧垂直的边缘线
    close_measure (MeasureHandle)//
    Rows := [RowEdge[0],RowEdge[|RowEdge| - 1]]//
    Columns := [ColumnEdge[0],ColumnEdge[|RowEdge| - 1]]//
    gen_cross_contour_xld (Cross, Rows, Columns, 16, Phi)//
    *
    * Transform the two border points into the world coordinate system
    get_calib_data (CalibDataID, ‘calib_obj_pose‘, [0,I - 1], ‘pose‘, Pose)//
    image_points_to_world_plane (CamParam, Pose, Rows, Columns, ‘m‘, SX, SY)//
    distance_pp (SY[0], SX[0], SY[1], SX[1], Width)//
    *
    * Display results of width measurement
    dev_display (Image)//
    dev_set_color (‘white‘)//
    dev_set_line_width (3)//
    dev_display (Rectangle)//
    dev_set_color (‘green‘)//
    dev_set_draw (‘fill‘)//
    dev_set_line_width (2)//
    dev_display (Cross)//
    dev_set_draw (‘margin‘)//
    disp_message (WindowHandle, ‘Width = ‘ + (Width * 100)$‘8.3f‘ + ‘cm‘, ‘window‘, 12, 12, ‘black‘, ‘true‘)//
    disp_continue_message (WindowHandle, ‘black‘, ‘true‘)//
    stop ()
    *
    * Now, measure the size of the calibration marks
    *
    * Extract the ellipses in the image 提取图像中的椭圆
    erosion_circle (PlateRegion, ROI, 17.5)//生成一个圆形结构膨胀元素(,腐蚀区域,元素结构尺寸)
    reduce_domain (Image, ROI, ImageReduced)//选取图像中感兴趣的区域
    edges_sub_pix (ImageReduced, Edges, ‘canny‘, 1, 20, 60)//使用滤波器来精确检测边缘
    select_contours_xld (Edges, SelectedEdges, ‘contour_length‘, 20, 99999999, -0.5, 0.5)//根据一些特征选择XLD轮廓(contour)
    * Fit ellipses to extracted edges
    fit_ellipse_contour_xld (SelectedEdges, ‘fitzgibbon‘, -1, 2, 0, 200, 3, 2, Row, Column, Phi, Radius1, Radius2, StartPhi, EndPhi, PointOrder)//根据椭圆和椭圆弧近似提取XLD轮廓
    MeanRadius1 := mean(Radius1)//
    MeanRadius2 := mean(Radius2)//
    DevRadius1 := deviation(Radius1)//
    DevRadius2 := deviation(Radius2)//
    * Transform the ellipses to world coordinates, where they should be circles
    * and convert the circles from meters to millimeters so that we can see them.
    contour_to_world_plane_xld (SelectedEdges, WorldCircles, CamParam, Pose, ‘mm‘)//
    * Fit ellipses to the circles in world coordinates
    fit_ellipse_contour_xld (WorldCircles, ‘fitzgibbon‘, -1, 2, 0, 200, 3, 2, Row, Column, Phi, RadiusW1, RadiusW2, StartPhi, EndPhi, PointOrder)//
    MeanRadiusW1 := mean(RadiusW1)//
    MeanRadiusW2 := mean(RadiusW2)//
    DevRadiusW1 := deviation(RadiusW1)//
    DevRadiusW2 := deviation(RadiusW2)//
    *
    * Display results of ellipse measurement
    dev_display (Image)//
    dev_set_color (‘yellow‘)//
    dev_set_line_width (3)//
    dev_display (SelectedEdges)//
    Message := ‘Measured dimensions of the ellipses‘//
    Message[0] := ‘                    Mean Radius1; Mean Radius2; (Standard deviations [%])‘//
    Message[1] := ‘Image coordinates:       ‘ + MeanRadius1$‘5.2f‘ + ‘px; ‘ + MeanRadius2$‘5.2f‘ + ‘px            (‘ + (DevRadius1 / MeanRadius1 * 100)$‘4.2f‘ + ‘, ‘ + (DevRadius2 / MeanRadius2 * 100)$‘4.2f‘ + ‘)‘//
    Message[2] := ‘World coordinates:       ‘ + (MeanRadiusW1 / 10)$‘5.2f‘ + ‘cm; ‘ + (MeanRadiusW2 / 10)$‘5.2f‘ + ‘cm            (‘ + (DevRadiusW1 / MeanRadiusW1 * 100)$‘4.2f‘ + ‘, ‘ + (DevRadiusW2 / MeanRadiusW2 * 100)$‘4.2f‘ + ‘)‘//
    disp_message (WindowHandle, Message, ‘window‘, 12, 12, ‘black‘, ‘true‘)//
    if (I < 10)
        disp_continue_message (WindowHandle, ‘black‘, ‘true‘)//
        stop ()
    endif
endfor
clear_calib_data (CalibDataID)//

以上是关于Calibration_3D学习的主要内容,如果未能解决你的问题,请参考以下文章

全景拼接学习-原理篇 相机标定 内参和外参

ROS学习笔记之——DAVIS346 calibration

CFT:Multi-Camera Calibration Free BEV Representation for 3D Object Detection——论文笔记

CFT:Multi-Camera Calibration Free BEV Representation for 3D Object Detection——论文笔记

OpenCV 相机参数标定(Camera Calibration)

Unity3D编程学习 小知识_人物移动导航_2018Oct