递推求欧拉函数的最简单的详解

Posted lightmain-blog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了递推求欧拉函数的最简单的详解相关的知识,希望对你有一定的参考价值。

有以下的两条性质:

if(gcd(i, prime[j]) == 1) 
    phi[i * prime[j]] = phi[i] * phi[prime[j]]; 
    //因为是积性函数。phi[prime[j]]其实就是prime[j]-1。
else 
    phi[i * prime[j]] = phi[i] * prime[j];
 所以,可以模仿埃氏筛的方法,来进行递推,顺便同时求出素数表。
F(i, 1, n) phi[i] = i; //相当于not_prime[]的作用
F(i, 1, n) 
    if(phi[i] == i) phi[i] = i - 1, prime[++cnt] = i;
    F(j, 1, cnt) 
        if(i % prime[j] == 0) //等价于gcd(i, prime[j]) != 1
            phi[i * prime[j]] = phi[i] * phi[prime[j]]; 
        else
            phi[i * prime[j]] = phi[i] * prime[j];
    

而如果想要像埃氏筛优化成欧拉筛的方式一样,把这个优化成线性的,同样只需要加一行。

F(i, 1, n) phi[i] = i;
F(i, 1, n) 
    if(phi[i] == i) phi[i] = i - 1, prime[++cnt] = i;
    F(j, 1, cnt) 
        if(i % prime[j] == 0)  
            phi[i * prime[j]] = phi[i] * phi[prime[j]]; 
            break; //这里加了一行
        
        else
            phi[i * prime[j]] = phi[i] * prime[j];
    

递推求phi[]的问题就这样解决了!

以上是关于递推求欧拉函数的最简单的详解的主要内容,如果未能解决你的问题,请参考以下文章

欧拉函数表POJ2478-Farey Sequence

欧拉函数总结

bzoj2818(欧拉函数递推)

欧拉函数详解

欧拉角的详解

关于欧拉函数与莫比乌斯函数等一系列积性函数的线性筛