697. Degree of an Array - LeetCode
Posted codingyangmao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了697. Degree of an Array - LeetCode相关的知识,希望对你有一定的参考价值。
Description:
Given a non-empty array of non-negative integers nums
, the degree of this array is defined as the maximum frequency of any one of its elements.
Your task is to find the smallest possible length of a (contiguous) subarray of nums
, that has the same degree as nums
.
Example 1:
Input: [1, 2, 2, 3, 1] Output: 2 Explanation: The input array has a degree of 2 because both elements 1 and 2 appear twice. Of the subarrays that have the same degree: [1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2] The shortest length is 2. So return 2.
Example 2:
Input: [1,2,2,3,1,4,2] Output: 6
Note:
nums.length
will be between 1 and 50,000.nums[i]
will be an integer between 0 and 49,999.
Accepted
58,524
Submissions
113,812
Solution:
First Attempt: All test cases passed, but time limit exceeded.
class Solution public int findShortestSubArray(int[] nums) int start = 0; int end = 0; int max = Integer.MIN_VALUE; int val = 0; int len = Integer.MAX_VALUE; int prev= Integer.MIN_VALUE; int prev2= Integer.MIN_VALUE; for(int i =0; i<nums.length; i++) if(prev2!=nums[i]&&Count(nums, nums[i])>max) max = Count(nums, nums[i]); val = nums[i]; prev2= nums[i]; // System.out.println("val = "+ val+ " max = "+ max); for(int i = 0; i<nums.length; i++) if(nums[i]!=prev && Count(nums, nums[i])==max) int tmp1_start = 0; int tmp2_end = 0; for(int j = 0; j<nums.length; j++) if(nums[j]==nums[i]) tmp1_start = j; break; // System.out.println(nums[i]+" "+ "j = "+ j); for(int k = nums.length-1; k>=0; k--) if(nums[k]==nums[i]) tmp2_end = k; break; //System.out.println(" k "+ k ); if((tmp2_end - tmp1_start)+1 <len) len = (tmp2_end - tmp1_start)+1; prev = nums[i]; return len; static int Count(int[] nums, int cur) int count = 0; for(int i = 0; i < nums.length; i++) if(nums[i] == cur) count++; return count;
以上是关于697. Degree of an Array - LeetCode的主要内容,如果未能解决你的问题,请参考以下文章
[leetcode]Array-697. Degree of an Array