Finding Black Holes 2
Posted yuewen-chen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Finding Black Holes 2相关的知识,希望对你有一定的参考价值。
- Spherically Symmetric Case
For the spherically symmetric case, \(f\) is constant. Thus
\[ \beginequation D_as^a=\frac1\sqrt\gamma\partial_r (\sqrt\gammas^r) \endequation \]
Because the spatial line element is written in a diagonal form,as
\[ \beginequation \gamma_ij=diag(\gamma_rr,\gamma_\theta\theta,\gamma_\theta\theta\sin\theta^2) \endequation \]
then \(D_as^a+K_abs^as^b-K=0\) can be write as
\[ \beginequation \boxed \partial_r(log \gamma_\theta\theta)-2\sqrt\gamma_rrK^\theta_\theta =0 \endequation \]
Indeed, \(A(r) =4\pi \gamma_\theta\theta(r)\) denotes the surface area of a radius, \(r\), and using the equation of \(\gamma_\theta\theta\) in the form
\[ -2\alpha K^\theta_\theta=(\partial_t-\beta^r\partial_r)log \gamma_\theta\theta\]
the equation (3) is written as
\[ \beginequation ( \partial_t+(\alpha \gamma^-1/2-\beta^r)\partial_r)A(r)=0, or, k^a\nabla_aA=0 \endequation \]
Thus, the apparent horizon in spherical symmetry may be defined as the surface where the local variation rate of its area along outgoing light rays is zero. - Check equation \(\partial_r(log \gamma_\theta\theta)-2\sqrt\gamma_rrK^\theta_\theta =0\):
consider a nonrotating black hole in isotropic coordinates
\[ \beginalign* \gamma_rr&=\varphi^4\ \gamma_\theta\theta &=\varphi^4 r^2\ K_ab &=0 \endalign* \]
the expansion equation (3) is:
\[ \beginalign 2\frac\varphi_,r\varphi+\frac12r &=0\ \Rightarrow -\fracMr^2(1+\fracM2r)^-1+\frac12r&=0\ \Rightarrow r &=\fracM2 \endalign \]
以上是关于Finding Black Holes 2的主要内容,如果未能解决你的问题,请参考以下文章