hdu6172&&hdu6185——BM算法
Posted lfri
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu6172&&hdu6185——BM算法相关的知识,希望对你有一定的参考价值。
hdu6172
模板的简单应用
先根据题中的表达式求出前几项,再上BM,注意一下n的大小关系。
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; const ll mod=1e9+7; ll powmod(ll a,ll b) ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1)if(b&1)res=res*a%mod;a=a*a%mod;return res; // head long long _,n; namespace linear_seq const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; long long solve(ll n,VI a,VI b) // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) mul(res,res,k); if ((n>>p)&1) for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; VI BM(VI s) VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; else ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; return C; long long gao(VI a,ll n) VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); ; int main() int T; scanf("%d", &T); while(T--) scanf("%lld", &n); n--; /*求第n项*/ printf("%I64d\n",linear_seq::gao(VI31,197,1255,7997,50959,324725,2069239,13185773,84023455,n-1));
hdu6185
模板的简单应用,先写个暴力程序找出前几项,可见 铺砖问题
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; const ll mod=1e9+7; ll powmod(ll a,ll b) ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1)if(b&1)res=res*a%mod;a=a*a%mod;return res; // head long long _,n; namespace linear_seq const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; long long solve(ll n,VI a,VI b) // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) mul(res,res,k); if ((n>>p)&1) for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; VI BM(VI s) VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; else ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; return C; long long gao(VI a,ll n) VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); ; int main() while(scanf("%lld", &n) == 1) /*求第n项*/ printf("%I64d\n",linear_seq::gao(VI1,5,11,36,95,281,781,2245,n-1));
hdu6198
模板的简单应用
先写一个爆搜找出前几项,
#include<bits/stdc++.h> using namespace std; const int maxn = 1000 + 10; bool vis[maxn]; int k; int f[100] = 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181; bool dfs(int n, int cnt) //printf("%d\n", n); if(n == 0 && cnt == k) return true; if(cnt == k) return false; for(int i = 0;i < 20 && f[i] <= n; i++) if(dfs(n - f[i], cnt+1)) return true; //有一个满足条件的分解即可返回 return false; int main() for(k = 1;k < 10;k++) for(int i = 0;i < 5000;i++) if(!dfs(i, 0)) printf("%d %d\n",k, i); break; return 0;
能很快找出前7项,这道题中够了。
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; const ll mod=998244353; ll powmod(ll a,ll b) ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1)if(b&1)res=res*a%mod;a=a*a%mod;return res; // head long long _,n; namespace linear_seq const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; long long solve(ll n,VI a,VI b) // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) mul(res,res,k); if ((n>>p)&1) for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; VI BM(VI s) VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; else ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; return C; long long gao(VI a,ll n) VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); ; int main() while(scanf("%lld", &n) == 1) /*求第n项*/ printf("%I64d\n",linear_seq::gao(VI4, 12, 33, 88, 232, 609, 1596,n-1)); // VI res = linear_seq::BM(VI4, 12, 33, 88, 232, 609, 1596); // for(int i = 1;i < res.size();i++) printf("%lld\n", (mod-res[i]) % mod);
参考链接:
1. https://blog.csdn.net/Anxdada/article/details/77817850
2. https://blog.csdn.net/WilliamSun0122/article/details/77926806
以上是关于hdu6172&&hdu6185——BM算法的主要内容,如果未能解决你的问题,请参考以下文章