BM递推杜教版
Posted lfri
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BM递推杜教版相关的知识,希望对你有一定的参考价值。
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; const ll mod=1e9+7; ll powmod(ll a,ll b) ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1)if(b&1)res=res*a%mod;a=a*a%mod;return res; // head long long _,n; namespace linear_seq const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; long long solve(ll n,VI a,VI b) // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) mul(res,res,k); if ((n>>p)&1) for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; VI BM(VI s) VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; else ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; return C; long long gao(VI a,ll n) VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); ; int main() while(~scanf("%I64d", &n)) /*求第n项*/ printf("%I64d\\n",linear_seq::gao(VI1,5,11,36,95,281,781,2245,6336,18061, 51205,n-1)); /*输出系数*/ /*前k项递推,需要2*k项能确定*/ VI res = linear_seq::BM(VI1,5,11,36,95,281,781,2245,6336,18061, 51205); for(int i = 1;i < res.size();i++) printf("%lld\\n", (mod-res[i]) % mod); //f(n) = f(n-1) + 5*f(n-2) + f(n-3) - f(n-4)
几个测试板子的数据:
Input 1 1 2 4 9 20 40 90 Output 1 0 10 0 Input 2 2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512 Output 2 0 0 0 0 0 0 0 1
Code From:
https://blog.csdn.net/qq_36876305/article/details/80275708
https://blog.csdn.net/running_acmer/article/details/82722111
Data From:
https://www.cnblogs.com/zhouzhendong/p/Berlekamp-Massey.html
以上是关于BM递推杜教版的主要内容,如果未能解决你的问题,请参考以下文章