MapReduce使用Partitioner分区案例
Posted tiepihetao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce使用Partitioner分区案例相关的知识,希望对你有一定的参考价值。
Mapper:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
public class EmployeeMapper extends Mapper<LongWritable, Text, LongWritable, Employee>
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException
//7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
String str = value.toString();
//分词
String[] words = str.split(",");
Employee e = new Employee();
e.setEmpno(Integer.parseInt(words[0]));
e.setEname(words[1]);
e.setJob(words[2]);
try
e.setMgr(Integer.parseInt(words[3]));
catch (Exception e2)
e.setMgr(0);
e.setHiredate(words[4]);
e.setSal(Integer.parseInt(words[5]));
try
e.setComm(Integer.parseInt(words[6]));
catch (Exception e2)
e.setComm(0);
e.setDeptno(Integer.parseInt(words[7]));
//将这个员工输出
context.write(new LongWritable(e.getDeptno()),e);
40
1
import java.io.IOException;
2
import org.apache.hadoop.io.LongWritable;
3
import org.apache.hadoop.io.NullWritable;
4
import org.apache.hadoop.io.Text;
5
import org.apache.hadoop.mapreduce.Mapper;
6
import org.apache.hadoop.mapreduce.Mapper.Context;
7
8
public class EmployeeMapper extends Mapper<LongWritable, Text, LongWritable, Employee>
9
10
11
protected void map(LongWritable key, Text value,Context context)
12
throws IOException, InterruptedException
13
//7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
14
String str = value.toString();
15
//分词
16
String[] words = str.split(",");
17
18
Employee e = new Employee();
19
e.setEmpno(Integer.parseInt(words[0]));
20
e.setEname(words[1]);
21
e.setJob(words[2]);
22
try
23
e.setMgr(Integer.parseInt(words[3]));
24
catch (Exception e2)
25
e.setMgr(0);
26
27
e.setHiredate(words[4]);
28
e.setSal(Integer.parseInt(words[5]));
29
try
30
e.setComm(Integer.parseInt(words[6]));
31
catch (Exception e2)
32
e.setComm(0);
33
34
e.setDeptno(Integer.parseInt(words[7]));
35
36
//将这个员工输出
37
context.write(new LongWritable(e.getDeptno()),e);
38
39
Reducer:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Reducer;
public class EmployeeReducer extends Reducer<LongWritable, Employee, LongWritable, Employee>
@Override
protected void reduce(LongWritable deptno, Iterable<Employee> values,Context context)
throws IOException, InterruptedException
for(Employee e:values)
context.write(deptno, e);
16
1
import java.io.IOException;
2
import org.apache.hadoop.io.LongWritable;
3
import org.apache.hadoop.mapreduce.Reducer;
4
5
public class EmployeeReducer extends Reducer<LongWritable, Employee, LongWritable, Employee>
6
7
8
protected void reduce(LongWritable deptno, Iterable<Employee> values,Context context)
9
throws IOException, InterruptedException
10
for(Employee e:values)
11
context.write(deptno, e);
12
13
14
Employee:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
public class Employee implements Writable
private int empno;
private String ename;
private String job;
private int mgr;
private String hiredate;
private int sal;
private int comm;
private int deptno;
public Employee()
@Override
public String toString()
return "Employee [empno=" + empno + ", ename=" + ename + ", job=" + job
+ ", mgr=" + mgr + ", hiredate=" + hiredate + ", sal=" + sal
+ ", comm=" + comm + ", deptno=" + deptno + "]";
@Override
public void readFields(DataInput in) throws IOException
this.empno = in.readInt();
this.ename = in.readUTF();
this.job = in.readUTF();
this.mgr = in.readInt();
this.hiredate = in.readUTF();
this.sal = in.readInt();
this.comm = in.readInt();
this.deptno = in.readInt();
@Override
public void write(DataOutput output) throws IOException
////7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
output.writeInt(empno);
output.writeUTF(ename);
output.writeUTF(job);
output.writeInt(mgr);
output.writeUTF(hiredate);
output.writeInt(sal);
output.writeInt(comm);
output.writeInt(deptno);
public int getEmpno()
return empno;
public void setEmpno(int empno)
this.empno = empno;
public String getEname()
return ename;
public void setEname(String ename)
this.ename = ename;
public String getJob()
return job;
public void setJob(String job)
this.job = job;
public int getMgr()
return mgr;
public void setMgr(int mgr)
this.mgr = mgr;
public String getHiredate()
return hiredate;
public void setHiredate(String hiredate)
this.hiredate = hiredate;
public int getSal()
return sal;
public void setSal(int sal)
this.sal = sal;
public int getComm()
return comm;
public void setComm(int comm)
this.comm = comm;
public int getDeptno()
return deptno;
public void setDeptno(int deptno)
this.deptno = deptno;
x
1
import java.io.DataInput;
2
import java.io.DataOutput;
3
import java.io.IOException;
4
import org.apache.hadoop.io.Writable;
5
import org.apache.hadoop.io.WritableComparable;
6
7
public class Employee implements Writable
8
private int empno;
9
private String ename;
10
private String job;
11
private int mgr;
12
private String hiredate;
13
private int sal;
14
private int comm;
15
private int deptno;
16
17
public Employee()
18
19
20
21
22
public String toString()
23
return "Employee [empno=" + empno + ", ename=" + ename + ", job=" + job
24
+ ", mgr=" + mgr + ", hiredate=" + hiredate + ", sal=" + sal
25
+ ", comm=" + comm + ", deptno=" + deptno + "]";
26
27
28
29
public void readFields(DataInput in) throws IOException
30
this.empno = in.readInt();
31
this.ename = in.readUTF();
32
this.job = in.readUTF();
33
this.mgr = in.readInt();
34
this.hiredate = in.readUTF();
35
this.sal = in.readInt();
36
this.comm = in.readInt();
37
this.deptno = in.readInt();
38
39
40
41
public void write(DataOutput output) throws IOException
42
////7499,ALLEN,SALESMAN,7698,1981/2/20,1600,300,30
43
output.writeInt(empno);
44
output.writeUTF(ename);
45
output.writeUTF(job);
46
output.writeInt(mgr);
47
output.writeUTF(hiredate);
48
output.writeInt(sal);
49
output.writeInt(comm);
50
output.writeInt(deptno);
51
52
53
public int getEmpno()
54
return empno;
55
56
57
public void setEmpno(int empno)
58
this.empno = empno;
59
60
61
public String getEname()
62
return ename;
63
64
65
public void setEname(String ename)
66
this.ename = ename;
67
68
69
public String getJob()
70
return job;
71
72
73
public void setJob(String job)
74
this.job = job;
75
76
77
public int getMgr()
78
return mgr;
79
80
81
public void setMgr(int mgr)
82
this.mgr = mgr;
83
84
85
public String getHiredate()
86
return hiredate;
87
88
89
public void setHiredate(String hiredate)
90
this.hiredate = hiredate;
91
92
93
public int getSal()
94
return sal;
95
96
97
public void setSal(int sal)
98
this.sal = sal;
99
100
101
public int getComm()
102
return comm;
103
104
105
public void setComm(int comm)
106
this.comm = comm;
107
108
109
public int getDeptno()
110
return deptno;
111
112
113
public void setDeptno(int deptno)
114
this.deptno = deptno;
115
116
Partitioner:
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class EmployeePartition extends Partitioner<LongWritable, Employee>
@Override
public int getPartition(LongWritable key2, Employee e, int numPartition)
// 分区的规则
if(e.getDeptno() == 10)
return 1%numPartition;
else if(e.getDeptno() == 20)
return 2%numPartition;
else
return 3%numPartition;
17
1
import org.apache.hadoop.io.LongWritable;
2
import org.apache.hadoop.mapreduce.Partitioner;
3
4
public class EmployeePartition extends Partitioner<LongWritable, Employee>
5
6
7
public int getPartition(LongWritable key2, Employee e, int numPartition)
8
// 分区的规则
9
if(e.getDeptno() == 10)
10
return 1%numPartition;
11
else if(e.getDeptno() == 20)
12
return 2%numPartition;
13
else
14
return 3%numPartition;
15
16
17
Driver:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class PartitionMain
public static void main(String[] args) throws Exception
// 求员工工资的总额
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//指明程序的入口
job.setJarByClass(PartitionMain.class);
//指明任务中的mapper
job.setMapperClass(EmployeeMapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Employee.class);
//设置分区的规则
job.setPartitionerClass(EmployeePartition.class);
job.setNumReduceTasks(3);
job.setReducerClass(EmployeeReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Employee.class);
//指明任务的输入路径和输出路径 ---> HDFS的路径
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//启动任务
job.waitForCompletion(true);
38
1
import org.apache.hadoop.conf.Configuration;
2
import org.apache.hadoop.fs.Path;
3
import org.apache.hadoop.io.LongWritable;
4
import org.apache.hadoop.io.NullWritable;
5
import org.apache.hadoop.mapreduce.Job;
6
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
7
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
8
public class PartitionMain
9
10
public static void main(String[] args) throws Exception
11
// 求员工工资的总额
12
Configuration conf = new Configuration();
13
Job job = Job.getInstance(conf);
14
15
//指明程序的入口
16
job.setJarByClass(PartitionMain.class);
17
18
//指明任务中的mapper
19
job.setMapperClass(EmployeeMapper.class);
20
job.setMapOutputKeyClass(LongWritable.class);
21
job.setMapOutputValueClass(Employee.class);
22
23
//设置分区的规则
24
job.setPartitionerClass(EmployeePartition.class);
25
job.setNumReduceTasks(3);
26
27
job.setReducerClass(EmployeeReducer.class);
28
job.setOutputKeyClass(LongWritable.class);
29
job.setOutputValueClass(Employee.class);
30
31
//指明任务的输入路径和输出路径---> HDFS的路径
32
FileInputFormat.addInputPath(job, new Path(args[0]));
33
FileOutputFormat.setOutputPath(job, new Path(args[1]));
34
35
//启动任务
36
job.waitForCompletion(true);
37
38
以上是关于MapReduce使用Partitioner分区案例的主要内容,如果未能解决你的问题,请参考以下文章
2018-07-30期 MapReduce分区(Partitioner)编程案例
Hadoop中的MapReduce框架原理自定义Partitioner步骤在Job驱动中,设置自定义PartitionerPartition 分区案例