最长公共子序列
Posted tingtin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最长公共子序列相关的知识,希望对你有一定的参考价值。
//poj 1458 Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 69884 Accepted: 29304 Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. Input The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. Output For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. Sample Input abcfbc abfcab programming contest abcd mnp Sample Output 4 2 0
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define N 1000 char s[N],p[N]; int ls,lp,dp[N][N]; //dp[i][j] :s[0]~s[i-1]与p[0]~p[j-1]的最长公共子序列长度 int main() while(~scanf("%s%s",&s,&p)) ls=strlen(s);lp=strlen(p); memset(dp,0,sizeof(dp)); for(int i =1;i<=ls;i++) for(int j=1;j<=lp;j++) if(s[i-1]==p[j-1]) dp[i][j] = dp[i-1][j-1]+1; else dp[i][j] = max(dp[i-1][j],dp[i][j-1]); printf("%d\n",dp[ls][lp]); return 0;
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define N 1000 char s[N],p[N]; int ls,lp,dp[N][N]; int flag [N][N]; void print(int i,int j) if(i==0&&j==0) return ; if(!flag[i][j]) print(i-1,j-1); printf("%c",s[i-1]) ;//只有共同才打印 else if(flag[i][j]==1) print(i-1,j); else print(i,j-1); int main() while(~scanf("%s%s",&s,&p)) ls=strlen(s);lp=strlen(p); memset(dp,0,sizeof(dp)); memset(flag,0,sizeof(flag)); for(int i =1;i<=ls;i++) for(int j=1;j<=lp;j++) if(s[i-1]==p[j-1]) dp[i][j] = dp[i-1][j-1]+1; flag[i][j] = 0; else if(dp[i-1][j]>dp[i][j-1]) flag [i][j] =1; dp[i][j] = dp[i-1][j]; else flag [i][j] =-1; dp[i][j] = dp[i] [j-1]; print(ls,lp);//打印出来 return 0;
以上是关于最长公共子序列的主要内容,如果未能解决你的问题,请参考以下文章
最长递增子序列 && 最大子序列最长递增子序列最长公共子串最长公共子序列字符串编辑距离