深度学习练手项目——DNN识别手写数字

Posted inchbyinch

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习练手项目——DNN识别手写数字相关的知识,希望对你有一定的参考价值。

该案例主要目的是为了熟悉Keras基本用法,以及了解DNN基本流程。

示例代码:

import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.datasets import mnist
from keras.layers import Dense
from keras.utils.np_utils import to_categorical

#加载数据,训练60000条,测试10000条,X_train.shape=(60000,28,28)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#特征扁平化,缩放,标签独热
X_train_flat = X_train.reshape(60000, 28*28)
X_test_flat = X_test.reshape(10000, 28*28)
X_train_norm = X_train_flat / 255 
X_test_norm = X_test_flat / 255
y_train_onehot = to_categorical(y_train, 10) #shape为(60000,10)
y_test_onehot = to_categorical(y_test, 10) #shape为(10000,10)
#构建模型
model = Sequential()
model.add(Dense(100, activation='relu', input_shape=(28*28,)))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='softmax'))
#模型配置和训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train_norm, y_train_onehot, epochs=5, batch_size=32, verbose=1)
print("训练完毕!")

训练结果为:

技术图片

继续在测试集上评估模型。

#测试集上评估表现
score = model.evaluate(X_test_norm, y_test_onehot)
print("在测试集上评估完毕!")
print("在测试集上表现:Loss=:.4f, Accuracy=:.4f".format(score[0], score[1]))
#在测试集上预测
y_pred_class = model.predict_classes(X_test_norm)  #shape=(10000,)
print("预测完毕!")
#查看预测效果,随机查看多张图片
idx = 22  #随机设置
count = 0
fig1 = plt.figure(figsize = (10,7))
for i in range(3):
    for j in range(5):
        count += 1
        ax = plt.subplot(3,5,count)
        plt.imshow(X_test[idx+count])  
        ax.set_title("predict: label:".format(y_pred_class[idx+count], 
                                                  y_test[idx+count]))
fig1.savefig('images/look.jpg')

运行结果为:

技术图片
技术图片

为了了解模型预测错误原因,可查看预测错误的图片。

#找出错误所在
X_test_err = X_test[y_test!=y_pred_class]  #(num_errors, 28, 28)
y_test_err = y_test[y_test!=y_pred_class]  #(num_errors,)
y_pred_class_err = y_pred_class[y_test!=y_pred_class]
#连续查看多张错误图片
idx = -1
count = 0
fig2 = plt.figure(figsize = (10,7))
for i in range(3):
    for j in range(5):
        count += 1
        ax = plt.subplot(3,5,count)
        plt.imshow(X_test_err[idx+count])  
        ax.set_title("predict: label:".format(y_pred_class_err[idx+count], 
                                                  y_test_err[idx+count]))
fig2.savefig('images/errors.jpg')

运行结果为:

技术图片

以上是关于深度学习练手项目——DNN识别手写数字的主要内容,如果未能解决你的问题,请参考以下文章

HCIA-AI_深度学习_利用TensorFlow进行手写数字识别

HCIA-AI_深度学习_利用TensorFlow进行手写数字识别

手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

利用手写数字识别项目详细描述BP深度神经网络的权重学习

「深度学习一遍过」必修20:基于AlexNet的MNIST手写数字识别

「深度学习一遍过」必修22:基于GoogLeNet的MNIST手写数字识别