题解 UVA11419 SAM I AM

Posted colazcy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解 UVA11419 SAM I AM相关的知识,希望对你有一定的参考价值。

题目链接

Solution SAM I AM

题目大意:给定一个\(n\)\(m\)列的网格图,某些网格上有敌人.请你选择一些行和一些列,覆盖所有敌人.并且使得选择的行与列数量之和最小

我们将每行看做\(X\)顶点,将每列看做\(Y\)顶点.原来行与列的交点就变成\(X\),\(Y\)顶点之间的边.那么原来的网格图就被转化成了一个二分图

所以这道题就是是一道二分图最小顶点覆盖的模板题了,只不过输出方案比较恶心而已.关于何为二分图最小顶点覆盖,本文不再赘述

关于二分图最小顶点覆盖,我们有一个定理,即二分图最小顶点覆盖等于最大匹配,下面给出一个简短的证明

设最大匹配为\(n\),那么

  • \(n\)个点是必须的,因为至少要\(n\)个点才能覆盖最大匹配的\(n\)条边
  • \(n\)个点是足够的,除了最大匹配\(n\)条边之外的边一定至少有一个顶点在匹配点上(被覆盖) 因为如果它两个顶点都是非匹配点,它就可以作为一条新的匹配边,与最大匹配矛盾

运用这个定理,我们可以很轻松的求出最小需要的炮弹数,但是怎么输出方案呢?

如果不算与附加源汇相连的附加弧,需要计入答案的无非这几种情况:

  • 出度大于\(1\)\(X\)顶点
  • 入度大于\(1\)\(Y\)顶点
  • 一条边的两个\(X\),\(Y\)顶点 并且它们度数都为\(1\) 这时候随便选哪个都可以

从源点开始搜索,但是不经过满流的边

那么需要打炮弹的顶点就是以下情况了:

  • 非孤立的未标记的\(X\)顶点 因为如果这个\(X\)顶点没有被标记,说明从超级源点到它的边满流了 也就是说需要从\(X\)顶点对应行打炮弹 对于上文情况\(1,3\)
  • 非孤立的被标记的\(Y\)顶点 如果这个\(Y\)顶点被标记,说明与它相连的\(X\)顶点中至少有一个点非满流,则需要从这个\(Y\)顶点这里打炮弹
    (注意反向边,它会让与这个被标记的\(Y\)顶点相连的所有\(X\)顶点也被标记,避免重复计算) 对应上文情况\(2\)

代码如下:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 2048;
const int maxm = (1001024 + maxn) << 1;
struct Edge
    int from,to,cap,flow;
    Edge() = default;
    Edge(int a,int b,int c,int d):from(a),to(b),cap(c),flow(d)
Edges[maxm];
int head[maxn],nxt[maxm],tot = 1;
inline void clear()
    memset(head,0,sizeof(head));
    memset(nxt,0,sizeof(nxt));
    tot = 1;

inline void addedge(int from,int to,int cap)
    Edges[++tot] = Edge(from,to,cap,0);
    nxt[tot] = head[from];
    head[from] = tot;
    Edges[++tot] = Edge(to,from,0,0);
    nxt[tot] = head[to];
    head[to] = tot;

int d[maxn];
inline bool bfs(int s,int t)
    memset(d,-1,sizeof(d)),d[s] = 0;
    queue<int> Q;
    Q.push(s),d[s] = 0;
    while(!Q.empty())
        int u = Q.front();Q.pop();
        for(int i = head[u];i;i = nxt[i])
            Edge &e = Edges[i];
            if(e.cap > e.flow && d[e.to] == -1)
                d[e.to] = d[e.from] + 1,Q.push(e.to);
        
    
    return d[t] != -1;

int cur[maxn];
inline int dfs(int u,int a,int t)
    if(u == t || a == 0)return a;
    int ret = 0,f;
    for(int &i = cur[u];i;i = nxt[i])
        Edge &e = Edges[i];
        if(d[u] + 1 == d[e.to] && (f = dfs(e.to,min(a,e.cap - e.flow),t)) > 0)
            ret += f;
            Edges[i].flow += f;
            Edges[i ^ 1].flow -= f;
            a -= f;
            if(a == 0)break;
        
    
    return ret;

inline int maxflow(int s,int t)
    int ret = 0;
    while(bfs(s,t))
        memcpy(cur,head,sizeof(head));
        ret += dfs(s,0x7fffffff,t);
    
    return ret;

int vis[maxn],apr[maxn];
inline void find(int u)
    vis[u] = 1;
    for(int i = head[u];i;i = nxt[i])
        Edge &e = Edges[i];
        if(e.flow == e.cap || vis[e.to])continue;
        find(e.to);
    

int n,m,r;
inline void solve()
    clear();
    memset(apr,0,sizeof(apr));
    for(int x,y,i = 1;i <= r;i++)
        scanf("%d %d",&x,&y),addedge(x,n + y,1),apr[x] = apr[n + y] = 1;
    int s = n + m + 1,t = n + m + 2;
    for(int i = 1;i <= n;i++)
        addedge(s,i,1);
    for(int i = n + 1;i <= n + m;i++)
        addedge(i,t,1);
    memset(vis,0,sizeof(vis));
    printf("%d",maxflow(s,t));
    find(s);
    for(int i = 1;i <= n;i++)if(apr[i] && !vis[i])printf(" r%d",i);
    for(int i = n + 1;i <= n + m;i++)if(apr[i] && vis[i])printf(" c%d",i - n);
    printf("\n");

int main()
#ifdef LOCAL
    freopen("fafa.in","r",stdin);
#endif
    while(scanf("%d %d %d",&n,&m,&r) && (n || m || r))
        solve();
    return 0;

以上是关于题解 UVA11419 SAM I AM的主要内容,如果未能解决你的问题,请参考以下文章

UVa 11419 SAM I AM (最小覆盖数)

Uva 11419 我是SAM

UVa 11419 我是SAM(最小点覆盖+路径输出)

uva 11419 最大匹配(最小点覆盖)

uva11855-求长度为1到n的相同子串出现的次数sam

题解Street Numbers [UVA138]