题解 UVA11419 SAM I AM
Posted colazcy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解 UVA11419 SAM I AM相关的知识,希望对你有一定的参考价值。
Solution SAM I AM
题目大意:给定一个\(n\)行\(m\)列的网格图,某些网格上有敌人.请你选择一些行和一些列,覆盖所有敌人.并且使得选择的行与列数量之和最小
我们将每行看做\(X\)顶点,将每列看做\(Y\)顶点.原来行与列的交点就变成\(X\),\(Y\)顶点之间的边.那么原来的网格图就被转化成了一个二分图
所以这道题就是是一道二分图最小顶点覆盖的模板题了,只不过输出方案比较恶心而已.关于何为二分图最小顶点覆盖,本文不再赘述
关于二分图最小顶点覆盖,我们有一个定理,即二分图最小顶点覆盖等于最大匹配,下面给出一个简短的证明
设最大匹配为\(n\),那么
- \(n\)个点是必须的,因为至少要\(n\)个点才能覆盖最大匹配的\(n\)条边
- \(n\)个点是足够的,除了最大匹配\(n\)条边之外的边一定至少有一个顶点在匹配点上(被覆盖) 因为如果它两个顶点都是非匹配点,它就可以作为一条新的匹配边,与最大匹配矛盾
运用这个定理,我们可以很轻松的求出最小需要的炮弹数,但是怎么输出方案呢?
如果不算与附加源汇相连的附加弧,需要计入答案的无非这几种情况:
- 出度大于\(1\)的\(X\)顶点
- 入度大于\(1\)的\(Y\)顶点
- 一条边的两个\(X\),\(Y\)顶点 并且它们度数都为\(1\) 这时候随便选哪个都可以
从源点开始搜索,但是不经过满流的边
那么需要打炮弹的顶点就是以下情况了:
- 非孤立的未标记的\(X\)顶点 因为如果这个\(X\)顶点没有被标记,说明从超级源点到它的边满流了 也就是说需要从\(X\)顶点对应行打炮弹 对于上文情况\(1,3\)
- 非孤立的被标记的\(Y\)顶点 如果这个\(Y\)顶点被标记,说明与它相连的\(X\)顶点中至少有一个点非满流,则需要从这个\(Y\)顶点这里打炮弹
(注意反向边,它会让与这个被标记的\(Y\)顶点相连的所有\(X\)顶点也被标记,避免重复计算) 对应上文情况\(2\)
代码如下:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 2048;
const int maxm = (1001024 + maxn) << 1;
struct Edge
int from,to,cap,flow;
Edge() = default;
Edge(int a,int b,int c,int d):from(a),to(b),cap(c),flow(d)
Edges[maxm];
int head[maxn],nxt[maxm],tot = 1;
inline void clear()
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
tot = 1;
inline void addedge(int from,int to,int cap)
Edges[++tot] = Edge(from,to,cap,0);
nxt[tot] = head[from];
head[from] = tot;
Edges[++tot] = Edge(to,from,0,0);
nxt[tot] = head[to];
head[to] = tot;
int d[maxn];
inline bool bfs(int s,int t)
memset(d,-1,sizeof(d)),d[s] = 0;
queue<int> Q;
Q.push(s),d[s] = 0;
while(!Q.empty())
int u = Q.front();Q.pop();
for(int i = head[u];i;i = nxt[i])
Edge &e = Edges[i];
if(e.cap > e.flow && d[e.to] == -1)
d[e.to] = d[e.from] + 1,Q.push(e.to);
return d[t] != -1;
int cur[maxn];
inline int dfs(int u,int a,int t)
if(u == t || a == 0)return a;
int ret = 0,f;
for(int &i = cur[u];i;i = nxt[i])
Edge &e = Edges[i];
if(d[u] + 1 == d[e.to] && (f = dfs(e.to,min(a,e.cap - e.flow),t)) > 0)
ret += f;
Edges[i].flow += f;
Edges[i ^ 1].flow -= f;
a -= f;
if(a == 0)break;
return ret;
inline int maxflow(int s,int t)
int ret = 0;
while(bfs(s,t))
memcpy(cur,head,sizeof(head));
ret += dfs(s,0x7fffffff,t);
return ret;
int vis[maxn],apr[maxn];
inline void find(int u)
vis[u] = 1;
for(int i = head[u];i;i = nxt[i])
Edge &e = Edges[i];
if(e.flow == e.cap || vis[e.to])continue;
find(e.to);
int n,m,r;
inline void solve()
clear();
memset(apr,0,sizeof(apr));
for(int x,y,i = 1;i <= r;i++)
scanf("%d %d",&x,&y),addedge(x,n + y,1),apr[x] = apr[n + y] = 1;
int s = n + m + 1,t = n + m + 2;
for(int i = 1;i <= n;i++)
addedge(s,i,1);
for(int i = n + 1;i <= n + m;i++)
addedge(i,t,1);
memset(vis,0,sizeof(vis));
printf("%d",maxflow(s,t));
find(s);
for(int i = 1;i <= n;i++)if(apr[i] && !vis[i])printf(" r%d",i);
for(int i = n + 1;i <= n + m;i++)if(apr[i] && vis[i])printf(" c%d",i - n);
printf("\n");
int main()
#ifdef LOCAL
freopen("fafa.in","r",stdin);
#endif
while(scanf("%d %d %d",&n,&m,&r) && (n || m || r))
solve();
return 0;
以上是关于题解 UVA11419 SAM I AM的主要内容,如果未能解决你的问题,请参考以下文章