HTTP协议的 “无连接,无状态”
Posted yhxb
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HTTP协议的 “无连接,无状态”相关的知识,希望对你有一定的参考价值。
HTTP 是一个属于应用层的面向对象的协议,HTTP 协议一共有五大特点:1、支持客户/服务器模式;2、简单快速;3、灵活;4、无连接;5、无状态。
无连接
无连接的含义是限制每次连接只处理一个请求。服务器处理完客户的请求,并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。
早期这么做的原因是 HTTP 协议产生于互联网,因此服务器需要处理同时面向全世界数十万、上百万客户端的网页访问,但每个客户端(即浏览器)与服务器之间交换数据的间歇性较大(即传输具有突发性、瞬时性),并且网页浏览的联想性、发散性导致两次传送的数据关联性很低,大部分通道实际上会很空闲、无端占用资源。因此 HTTP 的设计者有意利用这种特点将协议设计为请求时建连接、请求完释放连接,以尽快将资源释放出来服务其他客户端。
随着时间的推移,网页变得越来越复杂,里面可能嵌入了很多图片,这时候每次访问图片都需要建立一次 TCP 连接就显得很低效。后来,Keep-Alive 被提出用来解决这效率低的问题。
Keep-Alive 功能使客户端到服务器端的连接持续有效,当出现对服务器的后继请求时,Keep-Alive 功能避免了建立或者重新建立连接。市场上的大部分 Web 服务器,包括 iPlanet、IIS 和 Apache,都支持 HTTP Keep-Alive。对于提供静态内容的网站来说,这个功能通常很有用。但是,对于负担较重的网站来说,这里存在另外一个问题:虽然为客户保留打开的连接有一定的好处,但它同样影响了性能,因为在处理暂停期间,本来可以释放的资源仍旧被占用。当Web服务器和应用服务器在同一台机器上运行时,Keep-Alive 功能对资源利用的影响尤其突出。
这样一来,客户端和服务器之间的 HTTP 连接就会被保持,不会断开(超过 Keep-Alive 规定的时间,意外断电等情况除外),当客户端发送另外一个请求时,就使用这条已经建立的连接。
无状态
无状态是指协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态。即我们给服务器发送 HTTP 请求之后,服务器根据请求,会给我们发送数据过来,但是,发送完,不会记录任何信息。
HTTP 是一个无状态协议,这意味着每个请求都是独立的,Keep-Alive 没能改变这个结果。
缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。
HTTP 协议这种特性有优点也有缺点,优点在于解放了服务器,每一次请求“点到为止”不会造成不必要连接占用,缺点在于每次请求会传输大量重复的内容信息。
客户端与服务器进行动态交互的 Web 应用程序出现之后,HTTP 无状态的特性严重阻碍了这些应用程序的实现,毕竟交互是需要承前启后的,简单的购物车程序也要知道用户到底在之前选择了什么商品。于是,两种用于保持 HTTP 连接状态的技术就应运而生了,一个是 Cookie,而另一个则是 Session。
Cookie可以保持登录信息到用户下次与服务器的会话,换句话说,下次访问同一网站时,用户会发现不必输入用户名和密码就已经登录了(当然,不排除用户手工删除Cookie)。而还有一些Cookie在用户退出会话的时候就被删除了,这样可以有效保护个人隐私。
Cookies 最典型的应用是判定注册用户是否已经登录网站,用户可能会得到提示,是否在下一次进入此网站时保留用户信息以便简化登录手续,这些都是 Cookies 的功用。另一个重要应用场合是“购物车”之类处理。用户可能会在一段时间内在同一家网站的不同页面中选择不同的商品,这些信息都会写入 Cookies,以便在最后付款时提取信息。
与 Cookie 相对的一个解决方案是 Session,它是通过服务器来保持状态的。
当客户端访问服务器时,服务器根据需求设置 Session,将会话信息保存在服务器上,同时将标示 Session 的 SessionId 传递给客户端浏览器,浏览器将这个 SessionId 保存在内存中,我们称之为无过期时间的 Cookie。浏览器关闭后,这个 Cookie 就会被清掉,它不会存在于用户的 Cookie 临时文件。
以后浏览器每次请求都会额外加上这个参数值,服务器会根据这个 SessionId,就能取得客户端的数据信息。
如果客户端浏览器意外关闭,服务器保存的 Session 数据不是立即释放,此时数据还会存在,只要我们知道那个 SessionId,就可以继续通过请求获得此 Session 的信息,因为此时后台的 Session 还存在,当然我们可以设置一个 Session 超时时间,一旦超过规定时间没有客户端请求时,服务器就会清除对应 SessionId 的 Session 信息。
1. HTTP协议与TCP/IP协议的关系
HTTP的长连接和短连接本质上是TCP长连接和短连接。HTTP属于应用层协议,在传输层使用TCP协议,在网络层使用IP协议。IP协议主要解决网络路由和寻址问题,TCP协议主要解决如何在IP层之上可靠的传递数据包,使在网络上的另一端收到发端发出的所有包,并且顺序与发出顺序一致。TCP有可靠,面向连接的特点。
2. 如何理解HTTP协议是无状态的
HTTP协议是无状态的,指的是协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态。也就是说,打开一个服务器上的网页和你之前打开这个服务器上的网页之间没有任何联系。HTTP是一个无状态的面向连接的协议,无状态不代表HTTP不能保持TCP连接,更不能代表HTTP使用的是UDP协议(无连接)。
3. 什么是长连接、短连接?
在HTTP/1.0中,默认使用的是短连接。也就是说,浏览器和服务器每进行一次HTTP操作,就建立一次连接,但任务结束就中断连接。如果客户端浏览器访问的某个html或其他类型的 Web页中包含有其他的Web资源,如javascript文件、图像文件、CSS文件等;当浏览器每遇到这样一个Web资源,就会建立一个HTTP会话。
但从 HTTP/1.1起,默认使用长连接,用以保持连接特性。使用长连接的HTTP协议,会在响应头有加入这行代码:
Connection:keep-alive
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的 TCP连接不会关闭,如果客户端再次访问这个服务器上的网页,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接要客户端和服务端都支持长连接。
HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。
3.1 TCP连接
当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接,当读写操作完成后,双方不再需要这个连接 时它们可以释放这个连接,连接的建立是需要3次握手的,而释放则需要4次握手,所以说每个连接的建立都是需要资源消耗和时间消耗的。
3.2 TCP短连接
我们模拟一下TCP短连接的情况,client向server发起连接请求,server接到请求,然后双方建立连接。client向server 发送消息,server回应client,然后一次读写就完成了,这时候双方任何一个都可以发起close操作,不过一般都是client先发起 close操作。为什么呢,一般的server不会回复完client后立即关闭连接的,当然不排除有特殊的情况。从上面的描述看,短连接一般只会在 client/server间传递一次读写操作
短连接的优点是:管理起来比较简单,存在的连接都是有用的连接,不需要额外的控制手段。
3.3 TCP长连接
接下来我们再模拟一下长连接的情况,client向server发起连接,server接受client连接,双方建立连接。Client与server完成一次读写之后,它们之间的连接并不会主动关闭,后续的读写操作会继续使用这个连接。
首先说一下TCP/IP详解上讲到的TCP保活功能,保活功能主要为服务器应用提供,服务器应用希望知道客户主机是否崩溃,从而可以代表客户使用资源。如果客户已经消失,使得服务器上保留一个半开放的连接,而服务器又在等待来自客户端的数据,则服务器将应远等待客户端的数据,保活功能就是试图在服务 器端检测到这种半开放的连接。
如果一个给定的连接在两小时内没有任何的动作,则服务器就向客户发一个探测报文段,客户主机必须处于以下4个状态之一:
客户主机依然正常运行,并从服务器可达。客户的TCP响应正常,而服务器也知道对方是正常的,服务器在两小时后将保活定时器复位。
客户主机已经崩溃,并且关闭或者正在重新启动。在任何一种情况下,客户的TCP都没有响应。服务端将不能收到对探测的响应,并在75秒后超时。服务器总共发送10个这样的探测 ,每个间隔75秒。如果服务器没有收到一个响应,它就认为客户主机已经关闭并终止连接。
客户主机崩溃并已经重新启动。服务器将收到一个对其保活探测的响应,这个响应是一个复位,使得服务器终止这个连接。
客户机正常运行,但是服务器不可达,这种情况与2类似,TCP能发现的就是没有收到探查的响应。
3.4 长连接短连接操作过程
短连接的操作步骤是:
建立连接——数据传输——关闭连接...建立连接——数据传输——关闭连接
长连接的操作步骤是:
建立连接——数据传输...(保持连接)...数据传输——关闭连接
4. 长连接和短连接的优点和缺点
由上可以看出,长连接可以省去较多的TCP建立和关闭的操作,减少浪费,节约时间。对于频繁请求资源的客户来说,较适用长连接。不过这里存在一个问题,存活功能的探测周期太长,还有就是它只是探测TCP连接的存活,属于比较斯文的做法,遇到恶意的连接时,保活功能就不够使了。在长连接的应用场景下,client端一般不会主动关闭它们之间的连接,Client与server之间的连接如果一直不关闭的话,会存在一个问题,随着客户端连接越来越多,server早晚有扛不住的时候,这时候server端需要采取一些策略,如关闭一些长时间没有读写事件发生的连接,这样可 以避免一些恶意连接导致server端服务受损;如果条件再允许就可以以客户端机器为颗粒度,限制每个客户端的最大长连接数,这样可以完全避免某个蛋疼的客户端连累后端服务。
短连接对于服务器来说管理较为简单,存在的连接都是有用的连接,不需要额外的控制手段。但如果客户请求频繁,将在TCP的建立和关闭操作上浪费时间和带宽。
长连接和短连接的产生在于client和server采取的关闭策略,具体的应用场景采用具体的策略,没有十全十美的选择,只有合适的选择。
5. 什么时候用长连接,短连接?
长连接多用于操作频繁,点对点的通讯,而且连接数不能太多情况,。每个TCP连接都需要三步握手,这需要时间,如果每个操作都是先连接,再操作的话那么处理速度会降低很多,所以每个操作完后都不断开,次处理时直接发送数据包就OK了,不用建立TCP连接。例如:数据库的连接用长连接, 如果用短连接频繁的通信会造成socket错误,而且频繁的socket 创建也是对资源的浪费。
而像WEB网站的http服务一般都用短链接,因为长连接对于服务端来说会耗费一定的资源,而像WEB网站这么频繁的成千上万甚至上亿客户端的连接用短连接会更省一些资源,如果用长连接,而且同时有成千上万的用户,如果每个用户都占用一个连接的话,那可想而知吧。所以并发量大,但每个用户无需频繁操作情况下需用短连好。
推送服务
维基百科:2
推送技术,又名反向AJAX,指的是一种基于Internet,将由中心或发布者发出消息传输给用户的技术。与之相对的是拉取(参见AJAX),这种情况下请求是由用户或客户端主动发起的。
当我们开发需要和服务器交互的应用程序时,基本上都需要获取服务器端的数据,比如《地震应急通》就需要及时获取服务器上最新的地震信息。要获取服务器上不定时更新的信息,一般来说有两种方法:第一种是客户端使用Pull(拉)的方式,就是隔一段时间就去服务器上获取一下信息,看是否有更新的信息出现。第二种就是 服务器使用Push(推送)的方式,当服务器端有新信息了,则把最新的信息Push到客户端上。这样,客户端就能自动的接收到消息。
虽然Pull和Push两种方式都能实现获取服务器端更新信息的功能,但是明显来说Push方式比Pull方式更优越。因为Pull方式更费客户端的网络流量,更主要的是费电量,还需要我们的程序不停地去监测服务端的变化。
在开发android和iPhone应用程序时,我们往往需要从服务器不定的向手机客户端即时推送各种通知消息。我们只需要在Android或IPhone的通知栏处向下一拉,就展开了Notification Panel,可以集中一览各种各样通知消息。目前ios平台上已经有了比较简单的和完美的推送通知解决方案,可是Android平台上实现起来却相对比较麻烦。
3 我们首先了解一下为什么移动端维护长连接需要心跳机制。我们知道,维护任何一个长连接都需要心跳机制,客户端发送一个心跳给服务器,服务器给客户端一个心跳应答,这样就形成客户端服务器的一次完整的握手,这个握手是让双方都知道他们之间的连接是没有断开,客户端是在线的。如果超过一个时间的阈值,客户端没有收到服务器的应答,或者服务器没有收到客户端的心跳,那么对客户端来说则断开与服务器的连接重新建立一个连接,对服务器来说只要断开这个连接即可。那么在智能手机上的长连接心跳和在Internet上的长连接心跳有什么不同的目的呢?原因就在于智能手机使用的是移动无线网络,那么我们在讲长连接之前我们首先要了解无线移动网络的特点。4
1.无线移动网络的特点:
当一台智能手机连上移动网络时,其实并没有真正连接上Internet,运营商分配给手机的IP其实是运营商的内网IP,手机终端要连接上Internet还必须通过运营商的网关进行IP地址的转换,这个网关简称为NAT(NetWork Address Translation),简单来说就是手机终端连接Internet 其实就是移动内网IP,端口,外网IP之间相互映射。相当于在手机终端在移动无线网络这堵墙上打个洞与外面的Internet相连。
GGSN(GateWay GPRS Support Note 网关GPRS支持节点)模块就实现了NAT功能,由于大部分的移动无线网络运营商为了减少网关NAT映射表的负荷,如果一个链路有一段时间没有通信时就会删除其对应表,造成链路中断,正是这种刻意缩短空闲连接的释放超时,原本是想节省信道资源的作用,没想到让互联网的应用不得以远高于正常频率发送心跳来维护推送的长连接。这也是为什么会有之前的信令风暴,微信摇收费的传言,因为这类的应用发送心跳的频率是很短的,既造成了信道资源的浪费,也造成了手机电量的快速消耗。
2.Android系统的推送和iOS的推送有什么区别:
首先我们必须知道,所有的推送功能必须有一个客户端和服务器的长连接,因为推送是由服务器主动向客户端发送消息,如果客户端和服务器之间不存在一个长连接那么服务器是无法来主动连接客户端的。因而推送功能都是基于长连接的基础是上的。
iOS长连接是由系统来维护的,也就是说苹果的iOS系统在系统级别维护了一个客户端和苹果服务器的长链接,iOS上的所有应用上的推送都是先将消息推送到苹果的服务器然后将苹果服务器通过这个系统级别的长链接推送到手机终端上,这样的的几个好处为:
1.在手机终端始终只要维护一个长连接即可,而且由于这个长链接是系统级别的不会出现被杀死而无法推送的情况。
2.省电,不会出现每个应用都各自维护一个自己的长连接。
3.安全,只有在苹果注册的开发者才能够进行推送,等等。
Android的长连接是由每个应用各自维护的,但是Google也推出了和苹果技术架构相似的推送框架,C2DM,云端推送功能,但是由于Google的服务器不在中国境内,其他的原因你懂的。所以导致这个推送无法使用,Android的开发者不得不自己去维护一个长链接,于是每个应用如果都24小时在线,那么都得各自维护一个长连接,这种电量和流量的消耗是可想而知的。虽然国内也出现了各种推送平台,但是都无法达到只维护一个长连接这种消耗的级别。
3.推送的常见实现方式:
轮询(Pull)方式:即轮询(polling),客户端不断的查询服务器,检索新内容。
持久连接(Push)方式:即绑定(binding),客户端和服务器之间维持一个TCP/IP长连接,服务器向客户端push。
SMS(Push)方式:服务器又新内容时,发送一条类似短信的信令给客户端,客户端收到后从服务器中下载新内容,也就是SMS的推送方式。
苹果的推送系统和GoogleC2DM(Cloud to Device Messaging)推送系统其实都是在系统级别维护一个TCP/IP长连接,都是基于第二种的方式进行推送的。该方案可以解决由轮询带来的性能问题,但是还是会消耗手机的电池。iOS平台的推送服务之所以工作的很好,是因为每一台手机仅仅保持一个与服务器之间的连接,事实上GoogleC2DM也是这么工作的。
目前GoogleC2DM已经被Google云消息传递(英语:Google Cloud Messaging,简称GCM)所取代,但在国内在实际使用中使用GCM的并不太多,以下是备选方案参考:
使用XMPP协议(Openfire + Spark + Smack)
使用MQTT协议
第三种方式由于运营商没有免费开放,这种信令导致了这种推送在成本上是无法接受的,虽然这种推送的方式非常的稳定,高效和及时。
“HTTP长连接和短连接” “http://www.cnblogs.com/0201zcr/p/4694945.html” ?
“推送技术” “https://zh.wikipedia.org/zh/%E6%8E%A8%E9%80%81%E6%8A%80%E6%9C%AF” ?
“Android实现推送方式解决方案” “http://www.cnblogs.com/hanyonglu/archive/2012/03/04/2378971.html” ?
“互联网推送服务原理:长连接+心跳机制(MQTT协议) ” “http://blog.csdn.net/clh604/article/details/20167263”
以上是关于HTTP协议的 “无连接,无状态”的主要内容,如果未能解决你的问题,请参考以下文章