视觉slam闭环检测之-DBoW2 -视觉词袋构建

Posted jason来自星星

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了视觉slam闭环检测之-DBoW2 -视觉词袋构建相关的知识,希望对你有一定的参考价值。

需要准备的知识点:http://www.cnblogs.com/zjiaxing/p/5616653.html

            http://www.cnblogs.com/zjiaxing/p/5616664.html

         http://www.cnblogs.com/zjiaxing/p/5616670.html

        http://www.cnblogs.com/zjiaxing/p/5616679.html

 

 

 

#include <iostream>
#include <vector>

// DBoW2
#include "DBoW2.h" // defines Surf64Vocabulary and Surf64Database

#include <DUtils/DUtils.h>
#include <DVision/DVision.h>

// OpenCV
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>


using namespace DBoW2;
using namespace DUtils;
using namespace std;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

void loadFeatures(vector<vector<vector<float> > > &features);
void changeStructure(const vector<float> &plain, vector<vector<float> > &out,
  int L);
void testVocCreation(const vector<vector<vector<float> > > &features);
void testDatabase(const vector<vector<vector<float> > > &features);


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

// number of training images
const int NIMAGES = 4;

// extended surf gives 128-dimensional vectors
const bool EXTENDED_SURF = false;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

void wait()
{
  cout << endl << "Press enter to continue" << endl;
  getchar();
}

// ----------------------------------------------------------------------------

int main()
{
  vector<vector<vector<float> > > features;
  loadFeatures(features);
  testVocCreation(features);
  wait();

  testDatabase(features);

  return 0;
}

// ----------------------------------------------------------------------------

void loadFeatures(vector<vector<vector<float> > > &features)
{
  features.clear();
  features.reserve(NIMAGES);
  cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create(400, 4, 2, EXTENDED_SURF);
  cout << "Extracting SURF features..." << endl;
  for(int i = 0; i < NIMAGES; ++i)
  {
    stringstream ss;
    ss << "images/image" << i << ".png";
    cv::Mat image = cv::imread(ss.str(), 0);
    cv::Mat mask;
    vector<cv::KeyPoint> keypoints;
    vector<float> descriptors;

    surf->detectAndCompute(image, mask, keypoints, descriptors);

    features.push_back(vector<vector<float> >());
    changeStructure(descriptors, features.back(), surf->descriptorSize());
  }
}

// ----------------------------------------------------------------------------

void changeStructure(const vector<float> &plain, vector<vector<float> > &out,
  int L)
{
  out.resize(plain.size() / L);
  unsigned int j = 0;
  for(unsigned int i = 0; i < plain.size(); i += L, ++j)
  {
    out[j].resize(L);
    std::copy(plain.begin() + i, plain.begin() + i + L, out[j].begin());
  }
}

// ----------------------------------------------------------------------------

void testVocCreation(const vector<vector<vector<float> > > &features)
{
  // Creates a vocabulary from the training features, setting the branching
    factor and the depth levels of the tree and the weighting and scoring
   schemes      * Creates k clusters from the given descriptors with some seeding algorithm.
  
  const int k = 9;
  const int L = 3;
  const WeightingType weight = TF_IDF;
  const ScoringType score = L1_NORM;

  Surf64Vocabulary voc(k, L, weight, score);

  cout << "Creating a small " << k << "^" << L << " vocabulary..." << endl;
  voc.create(features);
  cout << "... done!" << endl;

  cout << "Vocabulary information: " << endl
  << voc << endl << endl;

  // lets do something with this vocabulary
  cout << "Matching images against themselves (0 low, 1 high): " << endl;
  BowVector v1, v2;
  for(int i = 0; i < NIMAGES; i++)
  {
    //Transforms a set of descriptores into a bow vector
    voc.transform(features[i], v1);
    for(int j = 0; j < NIMAGES; j++)
    {
      voc.transform(features[j], v2);

      double score = voc.score(v1, v2);
      cout << "Image " << i << " vs Image " << j << ": " << score << endl;
    }
  }

  // save the vocabulary to disk
  cout << endl << "Saving vocabulary..." << endl;
  voc.save("small_voc.yml.gz");
  cout << "Done" << endl;
}

// ----------------------------------------------------------------------------

void testDatabase(const vector<vector<vector<float> > > &features)
{
  cout << "Creating a small database..." << endl;

  // load the vocabulary from disk
  Surf64Vocabulary voc("small_voc.yml.gz");

  Surf64Database db(voc, false, 0); // false = do not use direct index
  // (so ignore the last param)
  // The direct index is useful if we want to retrieve the features that 
  // belong to some vocabulary node.
  // db creates a copy of the vocabulary, we may get rid of "voc" now

  // add images to the database
  for(int i = 0; i < NIMAGES; i++)
  {
    db.add(features[i]);
  }

  cout << "... done!" << endl;

  cout << "Database information: " << endl << db << endl;

  // and query the database
  cout << "Querying the database: " << endl;

  QueryResults ret;
  for(int i = 0; i < NIMAGES; i++)
  {
    db.query(features[i], ret, 4);

    // ret[0] is always the same image in this case, because we added it to the 
    // database. ret[1] is the second best match.

    cout << "Searching for Image " << i << ". " << ret << endl;
  }

  cout << endl;

  // we can save the database. The created file includes the vocabulary
  // and the entries added
  cout << "Saving database..." << endl;
  db.save("small_db.yml.gz");
  cout << "... done!" << endl;

  // once saved, we can load it again  
  cout << "Retrieving database once again..." << endl;
  Surf64Database db2("small_db.yml.gz");
  cout << "... done! This is: " << endl << db2 << endl;
}

 

以上是关于视觉slam闭环检测之-DBoW2 -视觉词袋构建的主要内容,如果未能解决你的问题,请参考以下文章

云时代重新定义主机安全:自动化安全闭环是核心

云时代重新定义主机安全:自动化安全闭环是核心

用优化大师检测到系统漏洞:补丁名称KB950582,补丁描述WINDOES XP更新程序。

准时下班系列!Access合集之第5集—闭环的Access系统开发流程演示

Openresty的开发闭环初探 | 岂安低调分享

阿里云安全中心:自动化安全闭环实现全方位默认安全防护