opencv::基于距离变换与分水岭的图像分割

Posted osbreak

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv::基于距离变换与分水岭的图像分割相关的知识,希望对你有一定的参考价值。

 

什么是图像分割
    图像分割(Image Segmentation)是图像处理最重要的处理手段之一
    图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
    根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans


距离变换常见算法有两种
    - 不断膨胀/腐蚀得到
    - 基于倒角距离

分水岭变换常见的算法
    - 基于浸泡理论实现 

 

cv::distanceTransform(
    InputArray  src, 
    OutputArray dst,  
    OutputArray  labels,  //离散维诺图输出
    int  distanceType,    // DIST_L1/DIST_L2,
    int maskSize,            // 3x3,最新的支持5x5,推荐3x3、
    int labelType=DIST_LABEL_CCOMP //dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致
)

cv::watershed(
    InputArray image, 
    InputOutputArray  markers
)

 

处理流程
    1. 将白色背景变成黑色-目的是为后面的变换做准备
    2. 使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
    3. 转为二值图像通过threshold
    4. 距离变换
    5. 对距离变换结果进行归一化到[0~1]之间
    6. 使用阈值,再次二值化,得到标记
    7. 腐蚀得到每个Peak - erode
    8. 发现轮廓 – findContours
    9. 绘制轮廓- drawContours
    10. 分水岭变换 watershed
    11. 对每个分割区域着色输出结果

 

int main(int argc, char** argv) 
    char input_win[] = "input image";
    char watershed_win[] = "watershed segmentation demo";
    Mat src = imread(STRPAHT2);
    if (src.empty()) 
        printf("could not load image...\n");
        return -1;
    
    namedWindow(input_win, CV_WINDOW_AUTOSIZE);
    imshow(input_win, src);

    
    // 将白色背景变成黑色-为后面的变换做准备
    for (int row = 0; row < src.rows; row++) 
        for (int col = 0; col < src.cols; col++) 
            if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) 
                src.at<Vec3b>(row, col)[0] = 0;
                src.at<Vec3b>(row, col)[1] = 0;
                src.at<Vec3b>(row, col)[2] = 0;
            
        
    
    //namedWindow("black background", CV_WINDOW_AUTOSIZE);
    //imshow("black background", src);
    
    
    // sharpen
    Mat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
    Mat imgLaplance;
    Mat sharpenImg = src;
    //使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
    filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);
    src.convertTo(sharpenImg, CV_32F);
    Mat resultImg = sharpenImg - imgLaplance;

    resultImg.convertTo(resultImg, CV_8UC3);
    imgLaplance.convertTo(imgLaplance, CV_8UC3);
    imshow("sharpen image", resultImg);

    
    // convert to binary
    Mat binaryImg;
    cvtColor(src, resultImg, CV_BGR2GRAY);
    // 转为二值图像通过threshold
    threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);
    imshow("binary image", binaryImg);

    
    Mat distImg;
    // 每一个非零点距离离自己最近的零点的距离
    distanceTransform(binaryImg, distImg, DIST_L1, CV_DIST_C, 5);

    // 归一化
    normalize(distImg, distImg, 0, 1, NORM_MINMAX);
    imshow("distance result", distImg);

    // 使用阈值,再次二值化,得到标记
    threshold(distImg, distImg, .4, 1, THRESH_BINARY);
    Mat k1 = Mat::ones(13, 13, CV_8UC1);
    // 膨胀/腐蚀
    erode(distImg, distImg, k1, Point(-1, -1));
    imshow("distance binary image", distImg);

    // markers 
    Mat dist_8u;
    distImg.convertTo(dist_8u, CV_8U);
    vector<vector<Point>> contours;
    // 发现轮廓
    findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));

    // 绘制轮廓
    Mat markers = Mat::zeros(src.size(), CV_32SC1);
    for (size_t i = 0; i < contours.size(); i++) 
        drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);
    
    circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);
    imshow("my markers", markers * 1000);

    
    // 分水岭变换
    watershed(src, markers);
    Mat mark = Mat::zeros(markers.size(), CV_8UC1);
    markers.convertTo(mark, CV_8UC1);
    bitwise_not(mark, mark, Mat());
    imshow("watershed image", mark);

    // 对每个分割区域着色输出结果
    vector<Vec3b> colors;
    for (size_t i = 0; i < contours.size(); i++) 
        int r = theRNG().uniform(0, 255);
        int g = theRNG().uniform(0, 255);
        int b = theRNG().uniform(0, 255);
        colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
    

    Mat dst = Mat::zeros(markers.size(), CV_8UC3);
    for (int row = 0; row < markers.rows; row++) 
        for (int col = 0; col < markers.cols; col++) 
            int index = markers.at<int>(row, col);
            if (index > 0 && index <= static_cast<int>(contours.size())) 
                dst.at<Vec3b>(row, col) = colors[index - 1];
            
            else 
                dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);
            
        
    
    imshow("Final Result", dst);
    
    waitKey(0);
    return 0;

 

以上是关于opencv::基于距离变换与分水岭的图像分割的主要内容,如果未能解决你的问题,请参考以下文章

C++ OpenCV基于距离变换与分水岭的图像分割

OpenCV(26)图像分割 -- 距离变换与分水岭算法(硬币检测扑克牌检测车道检测)

基于标记的分水岭分割算法

OpenCV实战——基于分水岭算法的图像分割

OpenCV中的图像处理 —— 霍夫线 / 圈变换 + 图像分割(分水岭算法) + 交互式前景提取(GrabCut算法)

OpenCV 中的鲁棒图像分割