非常感谢您阅读本文,有任何问题请在下面留言!
大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询
欢迎选修我们的R语言数据分析挖掘必知必会课程!
Posted tecdat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言进行相关矩阵分析及其可视化相关的知识,希望对你有一定的参考价值。
# Select columns of interest
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
# Add some missing values
mydata$hp[3] <- NA
# Inspect the data
head(mydata, 3)
res.cor <- correlate(mydata)
res.cor
该函数的其他参数correlate()
包括:
method
:字符串,指示要计算哪个相关系数(或协方差)。“pearson”(默认),“kendall”或“spearman”之一:可以缩写。diagonal
:将对角线设置为的值(通常为数字或NA)。
过滤器相关性高于0.8:
该功能focus()
使得可以focus()
在列和行上进行操作。此函数的作用与dplyr类似slect()
,但也会从行中排除选定的列。
# Extract the correlation
# Plot the correlation between mpg and all others
上/下三角形到缺失值
res.cor %>% shave()
res.cor %>% stretch()
可视化相关系数的分布:
重新排列并过滤相关矩阵:
res.cor %>%
focus(mpg:drat, mirror = TRUE) %>%
res.cor %>%
focus(mpg:drat, mirror = TRUE)
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":dbname:")
db_mtcars <- copy_to(con, mtcars)
class(db_mtcars)
correlate()
检测数据库后端,用于tidyeval
计算数据库中的相关性,并返回相关数据。
db_mtcars %>% correlate(use = "complete.obs")
sc <- sparklyr::spark_connect(master = "local")
mtcars_tbl <- copy_to(sc, mtcars)
correlate(mtcars_tbl, use = "complete.obs")
大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询
欢迎选修我们的R语言数据分析挖掘必知必会课程!
以上是关于R语言进行相关矩阵分析及其可视化的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用cor函数计算相关性矩阵进行相关性分析,使用corrgram包可视化相关性矩阵行和列使用主成分分析重新排序下三角形中使用底纹和颜色表示相关性(自定义颜色)上三角形中添加相关性数值
R语言使用cor函数计算相关性矩阵进行相关性分析,使用corrgram包可视化相关性矩阵行和列使用主成分分析重新排序下三角形中使用底纹和颜色表示相关性变量按其原始顺序绘制上三角形空白
R语言使用cor函数计算相关性矩阵进行相关性分析,使用corrgram包可视化相关性矩阵行和列使用主成分分析重新排序下三角形中使用平滑的拟合线和置信椭圆,上三角形中使用散点图对角线最小值和最大值
R语言使用psych包的fa函数对指定数据集进行因子分析(输入数据为相关性矩阵)使用rotate参数指定进行斜交旋转提取因子使用fa.diagram函数可视化斜交旋转因子分析并解读可视化图形
R语言使用psych包的fa.parallel函数使用平行分析方法分析数据集应该抽取多少主成分(输入数据为相关性矩阵),Kaiser-Harris标准,scree测试和平行分析可视化碎石图(肘部法)
R语言数据集探索性数据分析(exploratory data analysis, EDA)示例:所有特征的直方图可视化基于目标变量的分组可视化每个特征的箱图特征的相关性分析pairs散点图矩阵