CCF(引水入城:60分):最大流+ISAP算法

Posted garrettwale

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CCF(引水入城:60分):最大流+ISAP算法相关的知识,希望对你有一定的参考价值。

引水入城

201703-5

  • 这从题目分析来看很像最大流的问题,只需要增加一个超级源点和一个超级汇点就可以按照题意连边再跑最大流算法。
  • 因为数据量太大了,肯定会超时。但是没有想到可行的解决方法。
#include<bits/stdc++.h>
using namespace std;
const long long INF=0XFFFFFFFF;
const int maxn=4500016;
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
struct Edge 
  int from, to;long long cap, flow;
  Edge(int u, int v, long long c, long long f) : from(u), to(v), cap(c), flow(f) 
;
bool operator<(const Edge& a, const Edge& b) 
  return a.from < b.from || (a.from == b.from && a.to < b.to);


struct ISAP 
  int n, m, s, t;
  vector<Edge> edges;
  vector<int> G[maxn];
  bool vis[maxn];
  int d[maxn];
  int cur[maxn];
  int p[maxn];
  int num[maxn];

  void AddEdge(int from, int to, long long cap) 
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    m = edges.size();
    G[from].push_back(m - 2);
    G[to].push_back(m - 1);
  

  bool BFS() 
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(t);
    vis[t] = 1;
    d[t] = 0;
    while (!Q.empty()) 
      int x = Q.front();
      Q.pop();
      for (int i = 0; i < G[x].size(); i++) 
        Edge& e = edges[G[x][i] ^ 1];
        if (!vis[e.from] && e.cap > e.flow) 
          vis[e.from] = 1;
          d[e.from] = d[x] + 1;
          Q.push(e.from);
        
      
    
    return vis[s];
  

  void init(int n) 
    this->n = n;
    for (int i = 0; i <= n; i++) G[i].clear();
    edges.clear();
  

  int Augment() 
    int x = t;long long a = INF;
    while (x != s) 
      Edge& e = edges[p[x]];
      a = min(a, e.cap - e.flow);
      x = edges[p[x]].from;
    
    x = t;
    while (x != s) 
      edges[p[x]].flow += a;
      edges[p[x] ^ 1].flow -= a;
      x = edges[p[x]].from;
    
    return a;
  

 long long Maxflow(int s, int t) 
    this->s = s;
    this->t = t;
    long long flow = 0;
    BFS();
    memset(num, 0, sizeof(num));
    for (int i = 0; i <= n; i++) num[d[i]]++;
    int x = s;
    memset(cur, 0, sizeof(cur));
    while (d[s] < n) 
      if (x == t) 
        flow += Augment();
        x = s;
      
      int ok = 0;
      for (int i = cur[x]; i < G[x].size(); i++) 
        Edge& e = edges[G[x][i]];
        if (e.cap > e.flow && d[x] == d[e.to] + 1) 
          ok = 1;
          p[e.to] = G[x][i];
          cur[x] = i;
          x = e.to;
          break;
        
      
      if (!ok) 
        int m = n - 1;
        for (int i = 0; i < G[x].size(); i++) 
          Edge& e = edges[G[x][i]];
          if (e.cap > e.flow) m = min(m, d[e.to]);
        
        if (--num[d[x]] == 0) break;
        num[d[x] = m + 1]++;
        cur[x] = 0;
        if (x != s) x = edges[p[x]].from;
      
    
    return flow;
  
ek;
long long a,b,mod,x;
int n,m;
int compute()
    return x=(a*x+b)%mod;

int main() 
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin>>n>>m>>a>>b>>mod>>x;
    int s=0,t=n*m+1;
    ek.init(n*m+1);
    for(int i=0;i<n-1;i++)
        for(int j=0;j<m;j++)
            int from=i*m+j+1;
            int to=from+m;
            int cost=compute();
            ek.AddEdge(from,to,cost);
            ek.AddEdge(to,from,INF);
        
    
    for(int i=1;i<n-1;i++)
        for(int j=0;j<m-1;j++)
            int from=i*m+j+1;
            int to=from+1;
            int cost=compute();
            ek.AddEdge(from,to,cost);
            ek.AddEdge(to,from,cost);
        
    
    for(int i=0;i<m;i++)
        ek.AddEdge(s,i+1,INF);
    
    for(int i=0;i<m;i++)
        int from=(n-1)*m+i+1;
        int to=t;
        ek.AddEdge(from,to,INF);
    
    cout<<ek.Maxflow(s,t)<<endl;
    return 0;

以上是关于CCF(引水入城:60分):最大流+ISAP算法的主要内容,如果未能解决你的问题,请参考以下文章

CCF201703-5 引水入城(100分题解链接)

luogu 1066 引水入城(bfs+贪心)

[NOIP2010提高组]引水入城

算法学习笔记(8.1): 网络最大流算法 EK, Dinic, ISAP

按算法刷题路线

洛谷 P1514 引水入城