Intro to Machine Learning

Posted zhichun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Intro to Machine Learning相关的知识,希望对你有一定的参考价值。

 

 

本节主要用于机器学习入门,介绍两个简单的分类模型:

决策树和随机森林

不涉及内部原理,仅仅介绍基础的调用方法

 

1. How Models Work

 

以简单的决策树为例

 

This step of capturing patterns from data is called fitting or training the model 

The data used to train the data is called the trainning data

After the model has been fit, you can apply it to new data to predict prices of additional homes

 

 

 

 

技术图片

 

  

2.Basic Data Exploration

 

使用pandas中的describle()来探究数据:

 

    melbourne_file_path = ‘../input/melbourne-housing-snapshot/melb_data.csv‘

    melbourne_data      =  pd.read_csv(melbourne_file_path)

    melbourne.describe()

 

    output:

 

技术图片

 

 

 

 

注:数值含义

count:                     非缺失值的数量

mean:                                           平均值

std:                                              标准偏差,它度量值在数值上的分布情况

min、25%、50%、75%、max:        将每一列按照从lowest到highest排序,最小值是min, 1/4位置上,大于25%而小于50%是25%

 

 

3.Your First Machine Learning Model

 

  • Selecting Data for Modeling        

 

  import  pandas as pd 

  melbourne_file_path     =         ‘ ../input/melbourne-housing-snapshot/melb_data.csv‘

  melbourne_data          =          pd.read_csv(melbourne_file_path

  melbourne_data.columns

 

  •  Selecting The Prediction Target

 

方法:使用dot-notation来挑选prediction target

 

  y = melbourne_data.Price

 

  • Choosing "Features"              

  

  melbourne_features = [‘Rooms‘, ‘Bathroom‘, ‘Landsize‘, ‘Lattitude‘, ‘Longtitude‘]

  X = melbourne_data[melbourne_features]

 

查看数据是否加载正确:

  

  X.head()

 

探究数据基本特性:

 

  X.describe()

 

  • Building Your Model

 

我们使用scikit-learn来创造模型,scikit-learn教程如下:

具体的原理可以根据需要自己探究

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

构建模型步骤:

 

    •   Define:

         What type of model will it be? A decision tree? Some other type of model? Some other parameters of the model type are specified too.

 

    •   Fit: 

                       Capture patterns from provided data. This is the heart of modeling

 

    •   Predict: 

        Just what it sounds like

 

    •   Evaluate:

         Determine how accurate the model‘s predictions are



实现:


    from sklearn.tree import DecisionTreeRegressor

    melbourne_mode = DecisionTreeRegressor(random_state=1)

    melbourne_mode.fit(X , y)

 

打印出开始几行:

  

    print (X.head())

 

预测后的价格如下:

 

    print (melbourne_mode.predict(X.head())

 

  

4.Model Validation

 

由于预测的价格和真实的价格会有差距,而差距多少,我们需要衡量

使用Mean Absolute Error

 

    error= actual-predicted

 

在实际过程中,我们要将数据分成两份,一份用于训练,叫做training data, 一份用于验证叫validataion data

 

    from sklearn.model_selection import train_test_split

    train_X, val_X,  train_y, val_y =     train_test_split(X, y, random_state=0)

    melbourne_model               =      DecisionTreeRegressor()

    melbourne_model.fit(train_X, train_y)

    val_predictions                  =      melbourne_model.predict(val_X)

    print(mean_absolute_error(val_y, val_predictions))

  

5.Underfitting and Overfitting 

 

  • overfitting:     A model matches the data almost perfectly, but does poorly in validation and other new data.
  • underfitting:   When a model fails to capture important distinctions and patterns in the data, so it performs poorly even in training data.

 

 

技术图片

 

 

 

The more leaves we allow the model to make, the more we move from the underfitting area in the above graph to overfitting area.

 

 

 

技术图片

 

 

 

 

 

  from sklearn.metrics import mean_absolute_error

  from sklearn.tree import DecsionTreeRegressor

 

  def get_ame(max_leaf_nodes, train_X, val_X, train_y, val_y):

    model = DecisionTreeRegressor(max_leaf_nodes = max_leaf_nodes, random_state = 0)

    model.fit(train_X, train_y)

    preds_val = model.predict(val_X)

    mae = mean_absolute_error(val_y, preds_val)

    return(mae)

 

我可以使用循环比较选择最合适的max_leaf_nodes

 

    for max_leaf_nodes in [5,50,500,5000]:

      my_ame = get_ame(max_leaf_nodes, train_X, val_X, train_y, val_y)

      print(max_leaf_nodes, my_ame)

 

技术图片

 

 

最后可以发现,当max leaf nodes 为 500时,MAE最小, 接下来我们换另外一种模型

 

 

6.Random Forests

 

The random forest uses many trees, and it makes a prediction by averaging the predictions of each component tree. It generally has much better predictive accuracy than a single decision tree and it works well with default parameters.

 

    from sklearn.ensemble import RandomForestRegressor

    from sklearn.metrics import mean_absolute_error

 

    forest_model = RandomForestRegressor(random_state=1)

    forest_model.fit(train_X,train_y)

    melb_preds = forest_model.predict(val_X)

    print(mean_absolute_error(val_y, melb_preds))

 

 

可以发现最后的误差,相对于决策树小。 

one of the best features of Random Forest models is that they generally work reasonably even without this tuning. 

 

技术图片

 

 

 

7.Machine Learning Competitions

 

  •  Build a Random Forest model with all of your data

 

  •  Read in the "test" data, which doesn‘t include values for the target. Predict home values in the test data with your Random Forest model.

 

  •  Submit those predictions to the competition and see your score.

 

  •  Optionally, come back to see if you can improve your model by adding features or changing your model. Then you can resubmit to see how that stacks up on the competition leaderboard.

 

以上是关于Intro to Machine Learning的主要内容,如果未能解决你的问题,请参考以下文章

[Intro to Deep Learning with PyTorch -- L2 -- N9] Perceptron Trick

[Intro to Deep Learning with PyTorch -- L2 -- N15] Softmax function

Introduction to Machine Learning

[Intro to Deep Learning with PyTorch -- L2 -- N20] Cross-Entropy

[Intro to Deep Learning with PyTorch -- L2 -- N14] Sigmoid function

Python - 7 Steps to Mastering Machine Learning With Python