ARC096E Everything on It 容斥原理
Posted hankeke
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ARC096E Everything on It 容斥原理相关的知识,希望对你有一定的参考价值。
题目传送门
https://atcoder.jp/contests/arc096/tasks/arc096_c
题解
考虑容斥,问题转化为求至少有 \(i\) 个数出现不高于 \(1\) 次。
那么我们令这 \(i\) 个数被划分到 \(j\) 个集合中。但是由于限制是不多于一次,意味着可能存在一些数没有出现过。那么,我们计算的时候可以将这种情况看成新增一个数 \(0\),然后将这 \(i+1\) 个数划分到 \(j+1\) 个集合中,与 \(0\) 在同一个集合的表示没有出现过。于是将 \(i\) 个数中的一些数划分到 \(j\) 个集合的方案数为 \(\beginBmatrix i + 1 \\ j + 1 \endBmatrix\)。
然后考虑剩下来的 \(n - i\) 个数可以形成 \(2^n-i\) 个集合。我们可以枚举这些集合有没有出现,那么就是 \(2^2^n-i\)。最后剩下的 \(n-i\) 个数还可以往之前的 \(j\) 个集合里面贴,所以再乘上 \((2^n-i)^j\)。
于是最后的答案为:
\[
\sum_i=0^n (-1)^i \binom ni \sum_j=0^i \beginBmatrix i + 1 \\ j + 1 \endBmatrix \cdot 2^2^n-i \cdot (2^n-i)^j
\]
下面是代码,由于乘方都可以被预处理,所以时间复杂度为 \(O(n^2)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) return a < b ? a = b , 1 : 0;
template<typename A, typename B> inline char smin(A &a, const B &b) return b < a ? a = b , 1 : 0;
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x)
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
const int N = 3000 + 7;
int n, P;
int S[N][N], C[N][N];
inline int smod(int x) return x >= P ? x - P : x;
inline void sadd(int &x, const int &y) x += y; x >= P ? x -= P : x;
inline int fpow(int x, int y, const int &P = ::P)
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
inline void ycl()
S[0][0] = C[0][0] = 1;
for (int i = 1; i <= n + 1; ++i)
C[i][0] = 1;
for (int j = 1; j <= i; ++j) S[i][j] = (S[i - 1][j - 1] + (ll)S[i - 1][j] * j) % P, C[i][j] = smod(C[i - 1][j - 1] + C[i - 1][j]);
inline void work()
ycl();
int ans = 0;
for (int i = 0; i <= n; ++i)
int cnt = 0, ni22 = fpow(2, fpow(2, n - i, P - 1)), fn1 = fpow(2, n - i), fn = 1;
for (int j = 0; j <= i; ++j) sadd(cnt, (ll)S[i + 1][j + 1] * ni22 % P * fn % P), fn = (ll)fn * fn1 % P;
// dbg("i = %d, ni22 = %d, fn1 = %d, cnt = %d\n", i, ni22, fn1, cnt);
if (i & 1) sadd(ans, P - (ll)cnt * C[n][i] % P);
else sadd(ans, (ll)cnt * C[n][i] % P);
printf("%d\n", ans);
inline void init()
read(n), read(P);
int main()
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
以上是关于ARC096E Everything on It 容斥原理的主要内容,如果未能解决你的问题,请参考以下文章
Presto系列 | 一Presto SQL On Everything
Decide what you want,and go after it with everything you got!
多校2 Keen On Everything But Triangle hdu6601 主席树
hdu6601 Keen On Everything But Triangle 主席树+斐波那契数列妙用