4.1 卷积神经网络

Posted cs-zzc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了4.1 卷积神经网络相关的知识,希望对你有一定的参考价值。

1. 边缘检测

 

2. Padding

  为了解决两个问题:

    1.输出缩小。卷积操作后图像由(n,n)变成了(n-f+1,n-f+1)

    2.丢失图像边缘的大部分信息

  在卷积操作前对图像边缘进行填充,填充p个像素点。则填充并进行卷积后图像尺寸为(n+2p-f+1, n+2p-f+1)

  选择填充size:valid卷积:不填充

        same卷积:填充并卷积后的图像尺寸和原图像尺寸一样,即n+2p-f+1=n

3. 步长

  设 输入为n*n, 过滤器f*f, padding=p, 步长=s.  则输出为((n+2p-f)/s+1, (n+2p-f)/s+1).商不是整数时向下取整

4. 池化层

5. 超参数

  尽量不要自己设置超参数,应当查看别人文献中怎么样设置的

  随着层数加深,$n_h,n_w$通常会减少,而信道数通常增加

  池化层没有参数,卷积层参数较少,大部分参数都在FC层

卷积的优势:参数共享,稀疏连接

 

 

卷积层的超参数:卷积核大小,步长

池化层超参数:池化类型,核大小,步长

以上是关于4.1 卷积神经网络的主要内容,如果未能解决你的问题,请参考以下文章

卷积神经网络(原理与代码实现)

卷积神经网络(原理与代码实现)

卷积神经网络经典分类网络结构

Keras深度学习实战——卷积神经网络详解与实现

基于卷积神经网络VGG实现水果分类识别

论文翻译:搜索人脸活体检测的中心差异卷积网络及实现代码