目标检测——深度学习下的小目标检测(检测难的原因和Tricks)
Posted E-Dreamer
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测——深度学习下的小目标检测(检测难的原因和Tricks)相关的知识,希望对你有一定的参考价值。
小目标难检测原因
主要原因
(1)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,导致小目标在特征图的尺寸基本上只有个位数的像素大小,导致设计的目标检测分类器对小目标的分类效果差。
(2)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,如果分类和回归操作在经过几层下采样处理的 特征层进行,小目标特征的感受野映射回原图将可能大于小目标在原图的尺寸,造成检测效果差。
其他原因
(1)小目标在原图中的数量较少,检测器提取的特征较少,导致小目标的检测效果差。
(2)神经网络在学习中被大目标主导,小目标在整个学习过程被忽视,导致导致小目标的检测效果差。
Tricks
(1) data-augmentation.简单粗暴,比如将图像放大,利用 image pyramid多尺度检测,最后将检测结果融合.缺点是操作复杂,计算量大,实际情况中不实用;
(2) 特征融合方法:FPN这些,多尺度feature map预测,feature stride可以从更小的开始;
(3)合适的训练方法:CVPR2018的SNIP以及SNIPER;
(4)设置更小更稠密的anchor,设计anchor match strategy等,参考S3FD;
(5)利用GAN将小物体放大再检测,CVPR2018有这样的论文;
(6)利用context信息,简历object和context的联系,比如relation network;
(7)有密集遮挡,如何把location 和Classification 做的更好,参考IoU loss, repulsion loss等.
(8)卷积神经网络设计时尽量度采用步长为1,尽可能保留多的目标特征。
以上是关于目标检测——深度学习下的小目标检测(检测难的原因和Tricks)的主要内容,如果未能解决你的问题,请参考以下文章
深度学习下的分类,目标检测语义分割这三个方向具体的概念及其应用场景是什么?
深度学习下的分类,目标检测语义分割这三个方向具体的概念及其应用场景是什么?